2005 National Building Code of Canada

Seismic Design Changes

Impact on Insurance Industry

NBCC 2005 Seismic Design Changes

Gravity Element Failures

Reinforced Concrete Column Confinement

What Causes Earthquakes

Cascadia Subduction

7nn

Jan de Fuca Plate Slip

2005 National Building Code of Canada Seismic Design

- Basics of Seismic Design
- Changes Incorporated in 2005 NBCC
 - Seismic Loads New Hazard Map
 - Structural Analysis
- Rationale Behind the Changes
- Changes in CSA A23.3 Design Of Concrete Structures Standard.
- Implications for the Insurance Industry

Factors Influencing Seismic Effects

Ductility – Dissipating Seismic Energy

Structural Response To Earthquakes

Acceleration Response Spectrum

Natural Modes of Building Vibration

Scotta Plaza, Toronto, CN

Fig. 12-8 Typical shapes of the first three natural modes of vibration of a multistory structure.

\leftarrow Seismic Motion \rightarrow

Concrete Plastic Hinges

Seismic Shake Table Testing

Figure 6. Full-scale wooden house on shake table for testing.

Ductility - Shear Wall Structures

Braced Steel Structures

2005 NBCC - Uniform Hazard Spectrum

- More uniform margin of collapse (NEHRP), 1997 and Building Seismic Safety Council, 1997)
- Seismic hazard at a lower probability of exceedance, nearer probability of failure
- Maximum considered earthquake ground motion
- 2% in 50 year probability of exceedance (2500 year return period)
- New seismic hazard maps

2005 NBCC Seismic Design

Bad News

- 1995 Seismic Risk Level
 10% in 50 yrs => 1 / 475 yrs return period
- 2005 New Seismic Risk Level
 - -2% in 50 yrs => 1 / 2400 yrs return period
- Good News:
 500 x 5 ≠ 2500

COMMISSION GEOLOGIQUE DU CANADA OTTAWA

Rates of activity, and sizes of the biggest events were underestimated

Some data do not appear to fit the simple model

Full Robust Hazard Model

Highest value of:-Probabilistic H model Probabilistic R model Deterministic Cascadia model Probabilistic Stable craton model

Base Shear NBCC 1995 vs 2005

Design Spectral Acceleration

defined by 4 spectral hazard parameters and 2 site factors

 $S(T) = F_a S_a(0.2)$ for $T \le 0.2$ s $= F_{v}S_{a}(0.5)$ or $F_{a}S_{a}(0.2)$ whichever is smaller, for T = 0.5 s $= F_{v}S_{a}(1.0)$ for T = 1.0 s $= F_{v}S_{a}(2.0)$ for T = 2.0 s $= F_{v}S_{a}(2.0)/2$ for $T \ge 4.0$ s

Influence Of Soil

The Soil Factor

Can change the characteristics of earthquake motions.

 Poor - deep loose sand; silty clays; sand and gravel; and soft, saturated granular soils.

Amplify earthquake forces on water-saturated soils

Good - bedrock stiff soils.

Much less vibration is transferred through the foundation to the structure above.

Site Classification for Seismic Site Response

- A = hard rock
- B = rock
- C = dense soil or soft rock
- D = stiff soil
- E = > 3 m of "soft soil"
- F = others (liquefiable, peat, etc.)

T, s

Scotta Plaza, Toronio, ON

Conversion factors have been derived to ensure all hazard values are for site Class C

Uniform Hazard Spectra

Deaggregation of hazard

contributions by magnitude and distance

Uniform Hazard Spectrum

- More uniform margin of collapse (NEHRP), 1997 and Building Seismic Safety Council, 1997)
- Seismic hazard at a lower probability of exceedance, nearer probability of failure
- Maximum considered earthquake ground motion
- 2% in 50 year probability of exceedeance (2500 year return period)
- New seismic hazard maps

General Requirements NBCC 2005 Seismic Structural Design

- Design for clearly defined load paths
- Must have a clearly defined Seismic
 Force Resisting System (SFRS)
- Stiff elements not part of SFRS to be separated from structural components or made part of SFRS and accounted for in analysis

Base Shear NBCC 1995 vs 2005

R_o (Overstrength) Factor 1.3-1.7

R_o (Overstrength) Factor

R_o depends on the system :1.3 – 1.7

R Factors

1995:
$$\mathbf{V} = \frac{\mathbf{V}_{\mathbf{e}}}{\mathbf{R}}\mathbf{U}$$

2005:
$$V = \frac{V_e}{R_d R_o}$$

Effect of R values

Base shear comparison

R/C Ductile shear walls, R_d = 3.5 Soil Class C

Influence of R_dR_o (R/C SFRS)

Montreal, Soil Class C

Influence of R_dR_o (R/C SFRS)

Vancouver, Soil Class C

2005 NBCC Seismic Analysis

- Better consideration of irregularities
- Requires more dynamic analysis
- Better consideration of torsional sensitivity
- Lateral storey drift limit increased: 2% -> 2.5%. Relates to structural damage.
- Post-disaster buildings shall not have any irregularity

Types of structural irregularities

- **1** Vertical stiffness irregularity
- 2 Weight (mass) irregularity
- **3** Vertical geometric irregularity
- 4 In-plane discontinuity
- 5 Out-of-plane offsets
- 6 Discontinuity in capacity (weak storey)
- 7 Torsional sensitivity
- 8 Non-orthogonal systems

Irregularity trigger

When:

 $I_{E} \cdot F_{a} \cdot S_{a(0.2)} > 0.35$

+ any one of the 8 irregularity types,

the building is considered as *irregular*

1 Vertical Stiffness

lateral stiffness of the SFRS in a storey: < 70% of that in any adjacent storey, or < 80% of the average stiffness of the 3 storeys above or below.

2 Weight (Mass)

weight of a storey > 150% of weight of an adjacent storey. (a roof lighter than a floor below is excluded)

3 Vertical Geometric

horizontal dimension of the *SFRS* in a storey > 130% of that in any adjacent storey. (one-storey penthouse excluded)

- **4 In-Plane Discontinuity**
- in-plane offset of an element of the SFRS, or
- reduction in lateral stiffness of an element in the storey below.

5 Out-of-Plane Offsets

discontinuity of lateral force path e.g., out-of-plane offsets of the elements of the SFRS.

Bottom Floors

Top Floors

6 Discontinuity in Capacity - Weak Storey

storey shear strength less than that in the storey above. (Storey shear strength = total of all elements of the SFRS in the direction considered)

7 Torsional sensitivity

if the ratio B > 1.7.

 $\mathbf{B} = \delta_{\text{max}} \ / \ \delta_{\text{avg}}$

 δ calculated for static loads applied at \pm 0.10 D_n

8 Non-orthogonal systems

SFRS not oriented along a set of orthogonal axes.

Seismic Importance Factor

Importance	
Category	Ι _Ε
Low	0.8
Normal	1.0
High	1.3
Post Disaster	1.5

Modern Design Codes

- SEAOC 1988/NBC 1990
- CSA A23.3 1984 Canadian Concrete
 Design Code
 - Introduced "Capacity Design"

Concrete Plastic Hinges

Overview of Clause 21 Changes

- Introduced a "ductility" limit state for plastic hinges in walls and coupling beams
- Rotational capacity ≥ Rotational demand

 $\theta_{ic} \geq \theta_{id}$

Plastic Hinges to Absorb Energy

NBCC Concrete Ductile Systems

Un-Classified Systems

Earthquake Design Factor of Safety

- "Earthquake" Factored Load Design
 - Factored Load ≈ 0.15 to 0.5 x Expected
 Load
 - Factored Bending Resistance ≈ 0.17 to 0.6
 x Expected Load
 - "Factor of Safety" ≈ 0.17 to 0.6

Philosophical Underpinning

- Earthquakes are rare events, the design event has a 2% probability of exceedance in 50 years. That is, in an assumed 50 year building life, there is a 98% chance that the building will <u>not</u> experience an earthquake of this magnitude in its design life.
- Therefore design only for life safety, not asset protection, the building may be irreparable but no one dies.

2005 NBCC – Objective Based Format

- Part 1 Objectives of the Code
- Part 2 Prescriptive Solutions to Objectives
- **1995**
- *Firewalls with a fire rating of 2 hrs or less* shall be constructed of concrete or masonry.
- 2005
- *Firewalls with a fire rating of 2 hrs or less* not explicitly required to be masonry or concrete.

Further Information

Commentary J - NBCC 2005

Canadian J. of Civil Engineering, April 2003:

- overview and background of changes
- seismic hazard maps
- ground amplification factors
- equivalent static load method
- force modification factors
- torsion
- dynamic analysis
- foundation rocking
- non-structural components

Thank You