

Hurricane Katrina as Category 5, August 28, 2005

Some observations of damage from Hurricanes Katrina and Dennis –

and the role of the Three Little Pigs project

G.A. Kopp

gakopp@uwo.ca

Alan G. Davenport Wind Engineering Group Boundary Layer Wind Tunnel Laboratory The University of Western Ontario London, Ontario, Canada

Hurricane Dennis with the Florida Coastal Monitoring Program

(at Navarre Beach, Florida)

Wind tunnel experiments can model particular failure modes and the flight of debris

Hurricane Katrina with the Institute for Business & Home Safety

Déjà vu (all over again)...

Hurricane Camille, 1969 Coastal Mississippi

(Photo Credit: Chauncey Hinman)

Richelieu Apartments Before Hurricane Camille

 $From \ http://sciencepolicy.colorado.edu/about_us/meet_us/roger_pielke/camille/gallery.html$

(Photo Credit: Chauncey Hinman)

Richelieu Apartments After Hurricane Camille

(Photo Credit: Chauncey Hinman)

Trinity Episcopal Church Before Hurricane Camille

(Photo Credit: Chauncey Hinman)

Trinity Episcopal Church After Hurricane Camille

Biloxi in

1969 and 2005

House At Rest On Top of Cars

(Wilson Shaffer, National Weather Service/NOAA)

Camille's Envelope of High Water From SLOSH Model

Wind-induced pressures on a low-rise building

From Y. Tamura

Prototype 1 (several years ago!)
- a vacuum cleaner

The loading concept...

- We want realistic wind loads to full-scale structures without building an absolutely enormous wind tunnel
- Time histories of pressures will be obtained from wind tunnel experiments
- A loading system based on BRERWULF system

> say, ~100 mini-BRERWULFs to cover all surfaces of the

test building.

What's involved to make this happen?

Specifications for our Pressure Loading Acutators

- •Pressure boxes of 2' x 2', 4'x 4', and 8'x 8' (nominal)

 2'x 2' box pressure range of +5/-18 kPa

 4'x 4' box pressure range of +5/-15 kPa

 8'x 8' box pressure range of +4.5/-11 kPa,
- Frequency response in the range of 4-7 Hz
- •Large leakage flow rates to allow testing of porous materials such as bricks, or materials with cracks
- •Turn down ratio on pressures is 1/10

The results so far...

The first prototype at CCL in Cambridge

The connection between loading system and house surface - Pressure boxes

Current Design

Should work well for structural tests

The gaskets between the surface and the blue "bag" will cause problems for panel testing

What it will look like one year from now

