Canadian Megadisasters:

An exploration of sensitivities and implications for the insurance industry

Eric D. Robinson, PhD, Senior Scientist - Manager

What Constitutes a "MegaDisaster" or Extreme Disaster Scenario?

What is the next Canadian "Black Swan" event?

<u>Canada</u>

1998: Great North American Ice Storm, ~\$1.5 Billion (CAD 1998)

Some without power for over a month

2016: Fort McMurray Fire

2013: Calgary Floods, ~\$1.7 Billion (CAD 2013)

Total Damage ~ 5 Billion (CAD 2013)

CONFIDENTIAL

Goal: Create a plausible, yet highly unlikely shock to the market

Our Focus Will Be on Winds Perils...

Tropical Cyclones

Winter Storms

Severe Thunderstorms

Step 1: Consider the Meteorology Step 2: Consider the Exposure Step 3: Consider Historical Experience

CONFIDENTIAL

Tropical Cyclones

Consider the Meteorology: Tropical Cyclones

Sea Surface Temperatures (SST) > 26° C extending down to 50 m depth

Low vertical wind shear (change in wind with height)

Atmospheric Instability (heat/moisture/kinematic)

Deep column moisture (sea surface to mid-levels ~ 7km+ AGL)

Away from the equator (need source of rotation: *Coriolis Force*)

Pre-existing convection/waves to trigger cyclogenesis

Consider the Meteorology: Anatomy of a Tropical Cyclone

Schematic of typical tropical cyclone structure

The eye and eye wall from visible satellite

Consider the Meteorology: Important Characteristics of a Tropical Cyclone Event

- 1. Intensity
- 2. Asymmetry
- 3. Angle of Attack
- 4. Landfall Location
- 5. Forward speed
- 6. Duration

Saffir-Simpson Category	Maximum Sustained Wind Speed (km/h)*	Potential Damage	
Tropical Storm	63 to 118	Minimal	
Category 1	119 to 153	Minimal	
Category 2	154 to 177	Moderate	
Category 3	178 to 208	Extensive	
Category 4	209 to 251	Extreme	
Category 5	252 and higher	Catastrophic	

*The mean of multiple wind speed measurements taken over one-minute time periods at a height of 10 meters above the ground

NORTH ATLANTIC OCEAN

Canadian Tropical Cyclones

- Extratropical transition
- Weaker
 - Larger Rmax

PRINCE EDWARD

HALIFA

Faster forward speeds

Hurricane Juan GOES-12 Colorized Visible - 2km September 28, 2003 @ 2045 UTC

BRUNSWICK

Consider the Exposure: Atlantic Canada

Consider Historical Experience:Tropical Cyclone Risk in Canada

Historical Tracks

Historical Landfalls: 1900-2012

CONFIDENTIAL

The Tropical Cyclone Extreme Disaster Scenario: The Halifax Howler

CONFIDENTIAL

Extratropical Cyclones

Consider the Meteorology: Winter Storm Sub-perils

AIR

Consider the Meteorology: What Is Freezing Rain...?

Freezing rain occurs when supercooled water falls onto surfaces and objects that have a below freezing temperature.

This is a particular concern for:

- Power transmission/distribution lines
- Trees/tree limbs
- Infrastructure/road safety
- Agriculture

Consider the Meteorology: What Is Freezing Rain...?

Freezing rain occurs when precipitation falls through a warm layer into a subzero layer near the surface.

Consider the Exposure: Ontario/Quebec

Consider Historical Experience: The History of Ice Storms in Canada

Date	Location	Ice Accumulation	
1961	QC	35 mm	
1986	ON	65 mm	
1972	QC	40 mm	
1983	QC	50 mm	
1986	ON/QC	30 mm	
1998	ON/QC/NB	100 mm	
2002	ON	18 mm	
2003	NB	60 mm	
2013	ON	30 mm	

Median Number of Hours of Freezing Rain per Year

Consider Historical Experience: The 98 North American Ice Storm

AIR

CONFIDENTIAL

Consider Historical Experience: Ice Accumulation Return Periods

1998 Ice Storm \rightarrow Ice accumulation = 100+ mm \approx 35 mm R_{eq}

The Winter Storm Extreme Disaster Scenario: The Toronto Ice Storm

1998 Ice Storm \rightarrow Ice accumulation = 100+ mm \approx 35 mm R_{eq}

Severe Thunderstorms

Consider the Meteorology: Multiple Sub-Perils and Multiple Modes of Damage

Straight-Line Wind

- Localized or widespread
- 3-second gust
- Temporally variable
- 50–150 mph (80–240 km/hr)

Hail

- Strong core
- Different concentrations
 of different diameters
- Integrated damage over time and diameter: Total Kinetic Energy
- 1– 8+ inch (25 200 mm) diameter (quarter - bowling ball)

Tornado

- Strong, localized core
- Variable width and intensity over path
- Torsional and windload damage
- Rated F/EF1-F/EF5 (65-200+ mph or 100-320+ km/hr)

Consider the Meteorology : Severe Thunderstorm "Ingredients"

Severe Thunderstorms Require:

The collocation of these largely determines where severe thunderstorm activity occurs

Consider the Meteorology : Where Do These Ingredients Occur?

24

Consider the Exposure: Alberta

Tornado and Hail Activity in Canada

AIR

Recent Canadian Hailstorms

Calgary 2010: Largest hail reported ~ baseballs

Calgary 2012: Largest hail reported ~ 50-60mm

Recent Hailstorm Losses

Quebec (2008) \$137.2 million Sask. (2008) \$144.9 million Edmonton (2004) \$198.5 million Alberta (2010) \$569.6 million Calgary (2012) 578.2 million Airdrie (2014) \$568.9 million

Source: ICLR

~100 mm Hailstones (max reported in 1991 storm)

The Severe Thunderstorm Extreme Disaster Scenario: The Calgary Hailer

Duration: 10 mins

Maximum Hail Size: 100 mm

Horizontal Wind: 20 m/s

The Three Extreme Disaster Scenarios

CONFIDENTIAL

Extreme Disaster Scenario (EDS) Impacts

EDS Loss: The BIG Reveal

Total Loss \$32.5 Billion

Total Loss \$26.2 Billion

Total Loss \$13.6 Billion

But is this really the end of the story???

CONFIDENTIAL

Perturbations: Small shifts in intensity or location that could potentially have a significant effect on resultant losses

Halifax Howler Track Perturbations

AIR

Damage is related to maximum wind speed... but not LINEARLY...

- Exhaustion curves may be different by intensity
- Certain mitigation measures fail at certain thresholds
- Secondary Uncertainty is a function of intensity

Toronto Ice Storm Intensity Sensitivity

AIR

The Calgary Hailer: Hail Size Sensitivity

	51 mm	57 mm	64 mm	70 mm	100 mm
Avg.	46,346,813	292,594,258	989,020,434	1,939,645,424	8,824,948,113
Median	52,577,225	330,427,486	1,119,528,473	2,196,856,910	9,983,564,814
Max	75,307,116	476,751,788	1,609,533,263	3,155,400,929	14,361,999,683
Min	681,681	4,379,145	14,516,183	28,326,644	131,267,693

Let's Go Back to Classic Kinematics

What does this mean for hail size perturbations???

+10% Diameter $\rightarrow KE_{new} \sim (1.10)^{4} KE_{old} \rightarrow 1.5x$ increase in KE +20% Diameter $\rightarrow KE_{new} \sim (1.20)^{4} KE_{old} \rightarrow 2.0x$ increase in KE +400% Diameter $\rightarrow KE_{new} \sim (4.00)^{4} KE_{old} \rightarrow 256x$ increase in KE

Energy increase non-linearly with Diameter

Damage increases non-linearly with Energy

Putting it All Together

	51 mm	57 mm	64 mm	70 mm	100 mm
Avg.	46,346,813	292,594,258	989,020,434	1,939,645,424	8,824,948,113
Median	52,577,225	330,427,486	1,119,528,473	2,196,856,910	9,983,564,814
Max	75,307,116	476,751,788	1,609,533,263	3,155,400,929	14,361,999,683
Min	681,681	4,379,145	14,516,183	28,326,644	131,267,693

<u>Total Loss</u> \$32.5 Billion

AIR

<u>Total Loss</u> \$26.2 Billion

What this Means for Risk Management

- Every generation has it's "Scenario that won't ever happen", which inevitably happens
- Robust risk management demands the examination of these events, even if their probability is very low
- Proper evaluation of the meteorology and historical experience can assist in evaluating the feasibility of these extreme scenarios
- The sensitivity (hence uncertainty) of a given event can vary greatly depending on the peril and parameter of interest.

Eric Robinson, Senior Scientist, Manager AIR Worldwide erobinson@air-worldwide.com @DrCATModel

