How much will the hail damage cost?

http://www.bimmerfest.com/forums/attachment.php?attachmentid=179007&d=1238118468

Hail Impacts on Automobiles: A state-of-the-art review

Adam Blazejowski
Undergraduate Research Student
Department of Civil and Environmental Engineering
The University of Western Ontario
ablazejo@uwo.ca

The Hail Problem

- Texas: The costliest storm claimed 560 million dollars in damages to automobiles (Hanna, 2016)
- Alberta: The costliest storm of 2015 claimed 230 million dollars in total damages (Adams, 2015)
- Automobile hail damage accounts for 34% of hail insurance claims in the United States.(Fennig, 2016)
- 700 000 claims were made between 2013 and 2015. (Fennig, 2016)

Problem Statement

- Products exist on the market that allegedly offer hail protection, but there is no standard testing method for evaluating performance.
- A standard testing method is needed to qualify hail protection products.

Project Scope

- This project is intended to act as a knowledge base for subsequent projects attempting to make advances into hail impact testing methods.
- This project provides one with:
 - A background literature review
 - Preliminary impact testing results on automobile parts
 - Recommendations for future projects

Overview

- Literature review
 - Impact Mechanics
 - Automobile hail damage repair
 - Hail protection products
 - Hail Properties
 - Hail Replication
- Impact testing
 - Calculations
 - Testing setup
 - Procedures and Results
- Recommendations

Literature Review: Impact Mechanics

- Materials transfer impact energy into deformation.
- Different parts of the car deform differently.
 - Windshield vs. side/rear windows
 - Body Panels
- Modes of deformation: plastic, elastic, subsurface-plastic
- The mode of deformation can be predicted (Fischer, 2000).

Literature Review: Impact Mechanics

• ASTM F320: Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures.

ASTM F320-16, Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures, ASTM International, West Conshohocken, PA, 2016, www.astm.org

Literature Review: Impact Mechanics

- Elastic deformations are defined with equations.
 - Hertzian Stress fields (Fischer, 2000)
 - Vertical displacement for various impactor shapes (Fischer, 2000)
- Plastic deformations are approximated through Finite Element Analysis.
 - Finite Element Analysis Software has been developed (Thomas, 2001).

http://pubs.rsc.org/services/images/R SCpubs.ePlatform.Service.FreeContent .lmageService.svc/ImageService/Articl eimage/2012/NR/c1nr11294e/c1nr11 294e-f2.gif

Literature Review: Automobile hail damage repair

- Paint-less Dent Removal(PDR) is used to repair body panels.
- In Canada, PDR specialists are certified by Vale Training Solutions.
- The PDR specialist estimates damage based on the Hail Pricing matrix, then repairs it.

		TATSS
90		
Pain	tless Dent Re	emoval Specialists

HAIL REPAIR PRICING MATRIX

JOHN (519) 871-1490 TODD (519) 851-4839 R 151 Tiner Ave., Dorchester, ON NOL 1G2

Serving London and Surrounding Area

	394
epair Location	About the second
)ate	
VO/RO#	

TOTAL DENTS		RY LIG		LIGHT 6 TO 15 DENTS							MEDIUM 1 TO 50 DENTS		TOTAL	REMOVE & INSTALL	
AVG. SIZE	DIME		QTR	DIME	-	QTR	DIME	-	QTR	DIME	-	QTR	09/09/09/09		
HOOD	130	180	210	195	245	310	260	310	400	400	505	600			
ROOF	145	195	250	245	295	325	340	425	490	470	620	680		Hood & Liner	
DECK LID	100	145	180	160	245	270	225	310	340	345	440	505	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		
L QUARTER	100	145	180	160	210	240	245	310	CVR	290	375	CVR		Trunk/Tailgate/Liner	
L ROOF RAIL 25%	100	145	CVR	160	210	CVR	245	CVR	CVR	CVR	CVR	CVR		Headliner	
LR DOOR	90	130	165	145	195	230	230	295	CVR	275	CVR	CVR		Sunroof	
LF DOOR	90	130	165	145	195	230	230	295	CVR	275	CVR	CVR			
L FENDER	100	145	180	160	210	245	245	310	CVR	290	CVR	CVR		R Tail Light	
R FENDER	100	145	180	160	210	245	245	310	CVR	290	CVR	CVR		L Tail Light	
RF DOOR	90	130	165	145	195	230	230	295	CVR	270	CVR	CVR		R Headlight	
RR DOOR	90	130	165	145	195	230	230	295	CVR	270	CVR	CVR		L Headlight	
R ROOF RAIL 25%	100	145	CVR	160	210	CVR	245	CVR	CVR	CVR	CVR	CVR			
R QUARTER	100	145	180	160	210	240	245	310	CVR	290	375	CVR		Door Panel	
METAL SUNROOF	90	130	160	145	195	230	CVR	CVR	CVR	CVR	CVR	CVR		R Quarter Inner Trim	
COWL, OTHER	90	130	165	145	195	230	CVR	CVR	CVR	CVR	CVR	CVR		L Quarter Inner Trim	П
SEVERITY		HEAVY			SEVERE EXTREME						LIMIT 151 TO 200 DENTS		TOTAL	Cowl	
TOTAL DENTS	51 T	O 75 DI	ENTS	76 TO 100 DENTS			101 TO 150 DENTS 15			151 TO					
AVG. SIZE	DIME	NKL	QTR	DIME	NKL	QTR	DIME	NKL	QTR	DIME	NKL	QTR		0	
HOOD	490	570	700	585	765	890	730	CVR	CVR	860	CVR	CVR		* Roof repairs on minivan	s, SUV
ROOF -	570	750	845	630	845	1105	790	1060	1360	945	1270	1620		and extendicab trucks a	dd 25
DECK LID /	500	600	CVR	585	765	CVR	700	CVR	CVR	CVR	CVR	CVR		* Double panels or alumir	num
ıstomer					NOT	ES					P.D.R			panels add 25%	
surance Co														* Dent counts above 200 a	
aim #											R & I			estimated on a per case	basis
ar (TAX				
ake															
Nodel									TOTA	L					
N#															

How much will the hail damage cost?

http://www.bimmerfest.com/forums/attachment.php?attachmentid=179007&d=1238118468

Literature Review: Automobile hail damage repair

- Resin Glass repair can be used to repair windshields.
- Chips and cracks must be less than the size of a dollar coin, and at least 5cm away from the glass edge.

Repair costs:

- 100\$ for a chip or crack
- 400\$ to replace a van sized windshield

Literature Review: Hail Protection Products

- Coverking Coverbond 4
 - \$184.00 USD

- Hail Protector
 - \$399.99 USD

https://www.coverking.com/moderate-weather-coverbond4.html

https://www.hailprotector.com/

Literature Review: Hail Properties

- Hailstones are formed in supercell thunderstorms, which precede tornadoes.
- Wet growth vs. dry growth
- 84% spheroidal, 10% conical, 6% irregular(Giammanco, 2014)

http://www.theweatherprediction.com/severe/gianthail/

Literature Review: Hail Replication

- ASTM F320: Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures
 - Injection molded ice balls
- Injection mold hailstones have a higher hardness than natural hailstones, for all sizes. (Giammanco, 2014)
- Theoretically, harder hailstones impart more damage on the specimen(Giammanco, 2014).

Impact testing: Calculations

- Hailstones impact at terminal velocity.
- Terminal velocity occurs when the drag force equals the gravitational force.
- In an 8m drop, only the 0.5cm hailstone would reach terminal velocity.
- Kinetic energy of hail can be matched by increasing the mass, but decreasing the impact velocity.

Impact testing: Calculations

Diameter (m)	Mass (kg)	Velocity Function $v = \sqrt{\frac{mg}{c}} \tanh(\sqrt{\frac{gc}{m}t})$ $c = 0.5C_d \rho_{air} A$	Terminal Velocity (m/s)	Approx. Time to 90% of terminal velocity (s)	Distance Function $\mathbf{d_t} = \frac{m}{c} \ln \cosh \left(\sqrt{\frac{gc}{m}} \ t_t \right) $ $\mathbf{c} = 0.5 C_d \rho_{air} A$	Approx. Distance to 90% of terminal velocity (m)	Terminal Kinetic Energy (j)
0.005			9.9	1.5		8.3	100000000000000000000000000000000000000
0.01	0.00048		14	2.1		17	0.047
0.08	0.25		40	5.9		130	190

Impact testing: Testing setup and procedures

Impact testing: Testing setup and procedures

Impact testing: Testing setup and procedures

Phase 1: Impacts with a 0.75" steel ball bearing

- With and without the hail cover
- On the hood and door
- Velocities were confirmed with a chronograph
- 7.9m and 3.3m drop heights
- Hood areas impacted: front, back, and support

Phase 1 Conclusions

- The door was more resistant to damage.
- The door seemed stiffer than the hood.
- The hail cover failed to decrease the damage for financial savings.
- Impact damage did not vary between the areas of the hood.

Phase 2: Impacts with a 1.75" ice ball

- With and without the hail cover
- Above and around a hood support
- 4.9m drop height

Phase 2 Conclusions

- Ice balls hitting close to the hood support break apart on impact, and impart less damage.
- Ice balls hitting far from the hood support would bounce off, and impart more damage.

Phase 3: Impacts with 2.5",1.75", and 1.5" ice balls

- With and without the hail cover
- On the hood and door
- Dropped from 1.7m, 3.3m and 7.9m

Phase 3 Conclusions

- Steel ball with similar impact energy created a sharper dent, confirming the hardness effect.
- The ice balls created more oil canning surrounding the dent.
- Ice ball diameter did not seem to have an effect on damage for a similar impact energy.
- The cover did not decrease damage, but it tended to cause the 1.5" ice balls to bounce off.
- 2.5" ice ball masses were the most consistent.

3D printed ice cone mold

Conclusions

- The CoverKing Coverbond 4 Hail cover does not decrease damage for ice/steel ball impacts.
- Overlaid covers can cause ice balls to bounce off rather than explode.
- Harder steel balls impart sharper dents.
- Doors damage less due to stiffer construction.
- Hood supports cause ice balls to explode, therefore reducing damage.
- 3D printed molds are satisfactory for forming ice cones.
- Single ice balls molds are better than tray-style molds.

Recommendations

- Develop an ice-ball shooter.
- Develop a method to capture impact and measure impact depth.
- Perform impact tests on windshields installed on an actual automobile.
- Perform layered ice ball impacts.
- Compare lab dents to real life hail dents.

Final Remarks

- As communities continue to grow in the Canadian prairies and central United States, one can expect hail damage to automobiles to be an increasing problem(Roach, 2016).
- A testing method is needed in order to engineer solutions that can mitigate hail damage to automobiles.

References

- Adams, B. (2015, August 13). Prairie hailstorm tops \$230 million in insured damage (Rep.).

 Retrieved May 23, 2016, from Insurance Bureau of Canada website:

 http://www.ibc.ca/ab/resources/media-centre/media-releases/prairie-hailstorm-tops-230- million-in-insured-damage
- Fennig, D. (2016, May 2). 2013-2015 United States Hail Loss Claims (Rep.). Retrieved May 23, 2016, from Rocky Mountain Insurance Information Association website: http://www.rmiia.org/downloads/2013-2015-Hail-Claims-ForeCAST-Final59.pdf
- Fischer-Cripps, A. C. (2000). Introduction to contact mechanics. New York: Springer
- Giammanco, I. (2014, December 2). Observations of Hailstone Sizes and Shapes from the IBHS
 Hail Measurement Program: 2012-2014 (Rep.). Retrieved June 2, 2016, from
 ResearchGate website:
 https://www.researchgate.net/publication/269036189_Observations_of_Hailstone_Size
 s and Shapes from the IBHS Hail Measurement Program 2012-2014
- Hanna, M. (2016, April 20). San Antonio Storm becomes Costliest Hailstorm in Texas History (Rep.). Retrieved May 23, 2016, from Insurance Council of Texas website: http://www.insurancecouncil.org/docs/public/news/2016/April20b2016.pdf
- Roach, R. (2016, March). People power: Population trends in Alberta. Perch, 1(3), 4-5. Retrieved August 23, 2016, from https://assets.documentcloud.org/documents/2754948/Perch-People-Power-PopulationTrends-FINAL-1.pdf.
- Thomas, D. (2001). The Numerical Prediction of Panel Dent Resistance Incorporating Panel Forming Strains (Tech.). Retrieved August 1, 2016, from http://etd.uwaterloo.ca/etd/d6thomas2001old.pdf

Questions?

http://www.nssl.noaa.gov/education/svrwx101/hail/img/IMG_0097.jpg

Contact Us

Adam Blazejowski Undergraduate Research Student ablazejo@uwo.ca

Greg Kopp
Project Supervisor
gakopp@uwo.ca

