





# Dynamics of Urban Seismic Risk

#### Stephanie E. Chang University of British Columbia

ICLR Friday Forum, Toronto

April 17, 2015

#### Question

How is urban seismic risk changing?

- total risk
- distribution of risk
- rate of change







- What evidence do we have on how seismic risk is changing?
- What can models tell us?
  - Case study of Vancouver, Canada
- How might findings differ across cities?
- Why are risk dynamics important?

# Current Evidence

- Loss trends
- Risk factor trends
- Repeat events

## Earthquake Loss Trends







"As opposed to widely publicised claims of rapidly increasing loss trends, we find decreasing trends for both casualties and [economic] losses, when population growth and urbanisation are accounted for." (Scawthorn, 2011)

#### Global v. Local Trends



## **Risk Factor Trends**

#### Increasing Risk

- Suburban sprawl encroaching on hazard-prone areas (NRC 2006)
- Federal policies encouraging risk reduction and sharing rather than risk avoidance (Burby et al. 1999)
  - Development encouraged by false sense of security
- Planned land use Los Angeles (Olshanky and Wu 2002)
- Population change coastal migration, aging, race/ethnic composition, income & housing profiles (Cutter et al. 2007)

#### Decreasing Risk

 Improved building codes – balance out building inventory accumulation; North Carolina hurricanes (Jain and Davidson 2007)

#### "Repeat" Events

|                            | 1971 San<br>Fernando         | 1994<br>Northridge            |
|----------------------------|------------------------------|-------------------------------|
| Magnitude,<br>depth        | M <sub>w</sub> 6.6<br>8.4 km | M <sub>w</sub> 6.7<br>18.4 km |
| Population,<br>L.A. County | 7.0 million<br>(in 1970)     | 8.9 million<br>(in 1990)      |
| Casualties                 | 58 deaths,<br>2000 injuries  | 57 deaths,<br>9000+ injuries  |
| Direct losses<br>(1994\$)  | 1.8 billion                  | 24~44 billion                 |

Sources: SCEC; US Census; CA OES; Eguchi et al. 1998

Codes, retrofits, professional awareness since San Fernando did contribute significantly to reducing losses in Northridge (Olshansky 2001)



# Vancouver Case Study

- Loss model (casualties)
- Retrospective analysis (1971~2006) and forecast (2041)

Student research assistants: M. Gregorian, L. Yumagulova, W. Tse, M. de Ruiter

## Earthquake Loss Model



- Census (pop., dwellings)
- Ventura et al. (2005) (structural type)

#### Damage

- Ventura et al. (2005)
- BC buildings
- local engineers
- MMI



- HAZUS-MH
- Deaths and serious injuries

## Buildings

Allocation of Dwelling Units Across Structural Type Classes

|                                         | Structural Type <sup>(3)</sup> |     |         |            |                |            |             |             |             |            |
|-----------------------------------------|--------------------------------|-----|---------|------------|----------------|------------|-------------|-------------|-------------|------------|
|                                         | Wood frame                     |     | Masonry |            | Concrete frame |            |             | Mobile      |             |            |
| Occupancy type & vintage <sup>(2)</sup> | WLFR                           | WPB | WLFLR   | URM-<br>LR | URM-<br>MR     | CFIW       | CFCW-<br>LR | CFCW-<br>MR | CFCW-<br>HR | MH         |
| Single-detached house<br>- 1946 to 1960 | 80%                            | 20% |         |            |                |            |             |             |             |            |
| - all other vintages                    | 100%                           |     |         |            |                |            |             |             |             |            |
| Apartment 5+ storeys<br>- medium-rise   |                                |     |         |            | 900010         | 2014030    |             | V.V.252     |             |            |
| - pre-1945                              |                                |     |         |            | 40%            | 45%        |             | 15%         |             |            |
| - post-1945                             |                                |     |         |            |                | 11.0424-91 |             | 100%        |             | ]          |
| - high-rise                             |                                |     |         |            |                |            |             |             | 100%        |            |
| Movable dwelling                        | 121-0-5250-6                   |     |         |            |                |            |             |             |             | 100%       |
| Other dwelling<br>Semi-detached house   | 100%                           |     |         |            |                |            |             |             |             | DATE-COLOR |
| Row house                               | 100%                           |     |         |            |                |            |             |             |             |            |
| Apartment, duplex                       | 100%                           |     |         |            |                |            |             |             |             |            |
| Apartment <5 storeys<br>- pre-1970      |                                |     | 90%     | 10%        |                |            |             |             |             |            |
| - 1971-2006                             |                                |     | 90%     |            |                |            | 10%         |             |             |            |
| Other single-attached<br>house          | 100%                           |     |         |            |                |            |             |             |             |            |

Notes: Based on Ventura et al. (2005). WLFR= wood light-frame residential, WPB= wood post and beam, WLFLR= wood light frame low-rise residential, URM-LR (-MR)= unreinforced masonry low-rise (medium-rise), CFIW= concrete frame with infill walls, CFCW-LR (-MR, -HR)= concrete frame with concrete walls low-rise (medium-rise, high-rise), MH= mobilehome.

### **Damage Model**

#### Source:

Ventura, C.E., et al. 2005. "Regional Seismic Risk in British Columbia – Classification of Buildings and Development of Damage Probability Functions," *Canadian Journal of Civil Engineering* 32: 372-387.



#### MMI Scale for VI and Higher

| MMI  | Description of effects                                                                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VI   | Felt by all, many frightened; some heavy furniture moved; a few instances of fallen plaster; damage slight                                                                                                                           |
| VII  | Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable in poorly built structures; some chimneys broken                                                  |
| VIII | Damage slight in specially designed structures; considerable in ordinary substantial buildings with partial collapse; great in poorly built structures; fall of chimneys, factory stacks, columns, walls; heavy furniture overturned |
| IX   | Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb; damage great in substantial buildings, with partial collapse; buildings shifted off foundations                            |
| X    | Some well-built wooden structures destroyed; most masonry and frame structures with foundations destroyed; rails bent                                                                                                                |
| XI   | Few, if any, masonry structures remain standing; bridges destroyed; rails bent greatly                                                                                                                                               |
| XII  | Damage total; lines of sight and level distorted; objects thrown into air                                                                                                                                                            |

#### **Casualties Model**

 Table 13.5: Indoor Casualty Rates by Model Building Type for Extensive
 Structural

 Damage
 Damage

|     |               |                   | Casualty Se       | verity Leve       |            |                            |
|-----|---------------|-------------------|-------------------|-------------------|------------|----------------------------|
| #   | Building Type | Severity 1<br>(%) | Severity 2<br>(%) | Severity 3<br>(%) | Severity 4 | Deaths                     |
| 1   | W1            | 1                 | 0.1               | 0.001             | 0.001      | Life threatening injuries  |
| 2   | W2            | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 3   | S1L           | 1                 | 0.1               | 0.001             | 0.001      | Non life threatening       |
| 4   | S1M           | 1                 | 0.1               | 0.001             | 0.001      | injurios requiring modical |
| 5   | S1H           | 1                 | 0.1               | 0.001             | 0.001      | attention (o.g. v.rov)     |
| 6   | S2L           | 1                 | 0.1               | 0.001             | 0.001      | allention (e.g., x-ray)    |
| 7   | S2M           | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 8   | S2H           | 1                 | 0.1               | 0.001             | 0.001      | 0                          |
| 9   | S3            | 1                 | 0.1               | 0.001             | 0.001      | Source:                    |
| 10  | S4L           | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 11  | S4M           | 1                 | 0.1               | 0.001             | 0.001      | HAZUS-IVIH                 |
| 12  | S4H           | 1                 | 0.1               | 0.001             | 0.001      | (Earthquake                |
| 13  | S5L           | 1                 | 0.1               | 0.001             | 0.001      | Model)                     |
| 14  | S5M           | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 15  | S5H           | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 16  | C1L           | 1                 | 0.1               | 0.001             | 0.001      |                            |
| 1.7 | C12.6         |                   |                   | 0.001             | 0.001      |                            |

# Vancouver Case Study

- Loss model (casualties)
- Retrospective analysis (1971~2006) and forecast (2041)

#### **Spatial Change**



## **Building Stock Changes**

#### Construction

|                          | 1971          | 2006          |   |
|--------------------------|---------------|---------------|---|
| Population (millions)    | 1.08          | 2.12          | 1 |
| - in masonry buildings   | 2.8% (31,000) | 0.9% (18,900) | 1 |
| - in concrete buildings  | 6.7%          | 11.4%         |   |
| Dwellings                | 256,000       | 803,000       |   |
| - single-detached houses | 43.8%         | 35.6%         |   |

(Census; Ventura et al. 2005)

#### Codes

- NBCC adopted in 1973 (seismic provisions by Vancouver in 1965); revisions in 1985, 1999, 2005 (Finn 2004)
- "...most buildings constructed in British Columbia prior to the 1970s have limited resistance to seismic effects." (Ventura et al. 2005)
- □ Currently 1/3 of housing units in metro area built before 1971

## Earthquake Loss Model



- Census data pros and cons
- Modeling challenges and solutions
- Single scenario
- Consistent assumptions for 1971 and 2006 models
- Uncertainty and errors

### Scenario Event



Strait of Georgia

Subcrustal earthquake

4am

BC PEP (EMBC)



- Similar to 1946 Vancouver Island earthquake
- Strong but realistic event
- Same scenario for 1971 and 2006
- Residential casualties only

### **Damage and Casualties**

|                                               | 1971           | 2006           |
|-----------------------------------------------|----------------|----------------|
| Deaths                                        | 35             | 22             |
| Fatality rate (deaths per 1,000)              | 0.032          | 0.010          |
| Serious injuries                              | 51             | 38             |
| Serious injury rate (inj. per 1,000)          | 0.047          | 0.018          |
| Population in significantly damaged dwellings | 31,200<br>2.9% | 50,700<br>2.4% |

How realistic? Compare:

- Northridge Earthquake
- Other models (Ventura; NRCan)

### **Spatial Differentials**

Population in Significantly Damaged Buildings (Ratio 2006: 1971)



## Sensitivity Analysis: Ground Motions

#### **Population in Significantly Damaged Buildings**

| <b>Ground Motion</b> | 1971   | 2006   | Ratio<br>2006:1971 |
|----------------------|--------|--------|--------------------|
|                      |        |        |                    |
| M7.3 scenario        | 31,200 | 50,700 | 1.63               |
|                      |        |        |                    |
|                      |        |        |                    |

#### Forecast to 2041

(M7.3 earthquake)

Population 2006~2041: + 1.2 million (Metro Vancouver Regional Growth Strategy)



#### Land Use Forecasts

#### Status Quo (distribution) Growth





### Sensitivity to Land Use Forecast



(Tse, 2011)

#### Discussion

Trend more reliable than loss estimate

#### Findings

- Total casualties: net neutral (slight decrease)
- Casualty risk per person: reduced (=safer?)
- Building damage and displaced persons: increased risk
- In some areas, increased risk
- Risk decreasing for small earthquakes, increasing for large ones
- Improvements in earthquake engineering have barely kept up with growth of population at risk

#### Limitations

- Single scenario earthquake
- Residential building damage only
- Computational and data assumptions
- Omissions (e.g., code changes)

# Conclusions

Can results be generalized to other cities? Why are risk dynamics important?

#### **Eras of Rapid Growth**



## **Building Stock Replacement**

#### Tokyo

- 1923 Great Kanto earthquake
- WWII firebombs
- Seismic codes
- Lifetime of buildings, rate of demolition and replacement

#### Projected Change in Wood-frame Houses in Japan, 2000~2050



## Land Use Changes



#### Tokyo

Landfill / reclaimed land in Tokyo Bay since 1600s USGS ShakeMap : NEAR THE EAST COAST OF HONSHU, JAPAN III Mar 11, 2011 05:46 23 GMT M 9.0 N38.32 E142.37 Depth. 32 Dkm ID x0001xg



#### **2011 Great East Japan Earthquake**

- Ground failure in areas reclaimed after WWII
- ~300 km from epicentral area
- □ Cost to city: \$900 m.

- Damage to sewer, water, gas pipelines
- 77,000 hh lost water
- 1,100+ buildings damaged /destroyed by liquefaction



## **Important Variables**

- □ Era of rapid growth
- Building stock replacement rate
- Land use change
- Geographic setting (coastal, soils)
- Population size
- Construction practices change
- Building codes change
- Socio-demographic change
- Economic change
- Hazard and risk awareness
- Mitigation policies
- □ etc.

## **Key Questions**

- Dynamics of other forms of loss repair costs, lifelines, economic disruption, insured loss,...?
- How much did building code improvements reduce risk?
- □ How much can **future** code improvements reduce risk?
  - Need vintage-specific damage models
- □ Are **other cities** experiencing similar risk changes?
  - Need comparative / collaborative research
  - Developing countries
- □ Which cities will be at greater risk? Which neighborhoods?
- Mitigation strategies?

## Significance for the Insurance Industry

- Risk dynamics can be modeled by catastrophe models quite readily
- As with climate change, the dynamics of earthquake risk may affect decisions about:
  - Premiums
  - Reserves
  - Reinsurance purchases
  - Insurability
  - Incentivizing risk reduction
- In the risk equation, Vulnerability (and Resilience) change more quickly than Hazard