

Public Works Infrastructure and Source Water Planning

The Perfect Storm: New Development, High I/I and a 1000 + Year Event

Institute of Catastrophic Loss Reduction Basement Flooding Symposium September 19, 2013 Chris Gainham Senior Project Manager – Water/Wastewater Planning Hamilton Water

Presentation Overview

- Background
- Approach to Infiltration/Inflow (I/I)
- 1000+ yr storm
- Flooding Forensics
- Remedial and Adaptive Measures

Combined & Sanitary Service Areas

Background Information City of Hamilton

What is Infiltration/Inflow

- I/I refers to unintended rainwater and groundwater entering a separated sanitary sewer system
- Results in increased conveyance, treatment costs, treatment plant upsets (bug washout), sanitary sewer overflows, surcharge and basement flooding in the worst cases
- Direct and indirect sources:

Private Property Sources

illegally connected downspouts, foundation and area drains, uncapped cleanouts, leaky household laterals

Public Right of Way Sources

improperly connected catchbasins, open grid manhole lids, cross connections to the storm system, manhole, chamber & pipe defects

Components of Infiltration/Inflow

7

Approach to I/I

-Design allowance of 0.2 L/s/ha to 0.4L/s/ha depending on storm sewer level of service

-200 flow monitors, 30 raingauges

-Post event gauge adjusted RADAR forensics for big events

-Smoke testing, wet weather inspections, CCTV, zoom, dye testing

-Past 8 yrs 18 storms severe enough to cause flooding (50 – 100 yr storms)

The Big Storm

July 22, 2012 - persistent slow moving thunderstorms, heavy rain, large hail and unofficial reports of tornadoes

The Binbrook Urban Area

-Pop'n ~ 6000 – Full build-out ~14,000

-Most subdivisions built in the 2000's

-Single sanitary pump station (140 L/s) with no overflow and 10 km forcemain

-I/I already flagged as an issue – 5 AV flow monitors installed

- Typical flows in the range of 40 L/s + I/I = 140 L/s
- 0.75 L/s peak I/I
- Flows matching firm capacity of pumping station years in advance of planned pump station upgrade and forcemain twinning

11

The Big Storm – Flooding Calls Hamilton

~ hundreds of reported flooding calls, many more likely unreported in al

The Big Storm

Insurance Bureau of Canada estimates damage across Ontario from a combination of torrential rains, overland and basement flooding, large hail and unofficial reports of tornadoes, at ~\$80 M

Post Event Assessment

-140 to 250mm of rain in about 3 hours, return period estimate 1000+ years

-I/I completely overwhelms system & sewers surcharge as much as 8 m with peak flows of 530 L/s (~ 4.0 L/s/ha I/I rate or 10 x design)

-Based on information gathered from residents, it appears that approximately 60% of basement flooding is believed to have occurred as a result of back-up of the sanitary sewer system while the remaining 40% is more associated with the intrusion of foundation water primarily from the sump pits.

Flooding Triage Response

- -Rainfall and sanitary flow monitor analysis
- -Smoke testing and wet weather MH inspections
- -Interviews with residents
- -CCTV and ZOOM camera investigations
- -Engineering review of major and minor storm conveyance and storage
- -Reassessment of Master Plan specified pump station and forcemain capacity/conveyance upgrades

Rainfall Analysis Or

My Storm is Bigger Than Your Storm

Rainfall Analysis IDF

17

Post Event Flow Monitor Assessment Analysis of System Surcharge

Level Measured in Sanitary Pipes During July 22, 2012 Storm 9 0 •56 North GP14A121 Level m 10 8 Southbrook 1 GP14A004 Level m 20 Binbrook - HWY 56 W GP14A063 Level m 7 Rain mm/5 min time step FallFairRd GP14A048 Level m 30 6 — Tanglewood GP13A036 Level m 40 Sewer level (m) 5 Parmount Calder Rain mm 50 HD007 Highland Road Rain mm 4 60 3 70 typical pipe diameter 2 80 1 90 100 0 22/07/2012 15:00 22/07/2012 18:00 22/07/2012 21:00 23/07/2012 12:00 22/07/2012 12:00 23/07/2012 3:00 23/07/2012 9:00 23/07/2012 0:00 23/07/2012 6:00

Hamilton Post Event Flow Monitor Assessment

Smoke Testing and Reconnaissance – Inflow Sources

Wet Weather Manhole Inspections – Infiltration Sources

Wet Weather Manhole Inspections – Infiltration Sources

CCTV Infiltration Defect Mapping

Manhole Pickholes as a Source of Inflow

Experience Enhancing Excellence

Field Measurement of MH Inflow

MH Sealing – Near Complete Removal of Inflow in Field Testing

Lessons Learned

-Ok, so we're used to 100 yr storms...they happen all the time, but a 1000+ year storm; that's impressive and a great snapshot of maximum I/I potential!

-Expect major system flows and potential sanitary inflow more frequently

- -Identified MH pick holes as a major source of inflow to the system during major storms with road ponding
- -Flow monitoring new developments
- -Mainline backwater valves now required in <u>all</u> newly constructed homes?

City Actions

-Solid MH lids to address inflow from the major system - potential removal of 200+ L/s of direct inflow. Simple, cheap and reliable.

-Wet weather reconnaissance critical in identifying defects. Follow up chemical grouting and MH rehabilitation

-Understanding wet weather vulnerabilities unique to new development

-Investigating feasibility of an emergency gravity overflow for the pump station

-Reassessing Master Planned upgrades to pumping station and forcemain capacity & timing. Can we successfully reduce I/I?

-Upcoming City Wide Flooding and Drainage Master Plan

