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ABSTRACT

Often the connections of steel frames are assumed to be fully rigid or ideally pinned when

evaluate the system reliability of steel frames, although it is well known that such idealization

may not be adequate since the connections are better modeled as semi-rigid connections.  This

study is focused on evaluating the reliability of steel frame systems with rigid connections and

with semirigid connections.  The system reliability of frames is assessed using simulation

technique.  The limit state function for the system reliability analysis is established based on the

collapse load factor which is obtained using the second-order refined plastic-hinge analysis

method.  The uncertainty considered are the loads and material yield strength.  The results

indicate that although the reliability of frame systems with rigid connections is always higher

than that of frame systems with semirigid connections, however, from reliability point of view,

in most cases their differences are not very significant.  Therefore, it appears that if the quality

control of the construction of the connections is adequate, the consideration of whether the

connections are rigid or semirigid does not significantly impact the system reliability, although it

could affect the estimated expected cost of the system which includes the initial cost and

cost of collapse.
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1.0  Introduction

In the literature, often the reliability analysis of the steel frames is carried out by assuming

that the connections between the beams and the columns are either fully rigid or ideally pinned.

The fully rigid connection assumption implied that full slope continuity exists between the

adjoining members and that the full gravity moment is transferred from the beams to the

columns.  On the other hand, the ideally pinned connection assumption implies that there is no

restraint for rotation between the beams and the columns and the columns carry no gravity

moment transferred from the beams.  These assumptions simplify the structural analysis but may

not mimic the observed structural behaviour.  It has been indicated (e.g., Chen et al. 1996) that

stiffness of the current practical connections falls between that of fully rigid and that of ideally

pinned.  In other words, the connections are semirigid connections.  The semirigid connections

may affect the frame structural behaviour and consequently the estimated system reliability.

It should be noted that structures including the steel frame structures are designed using the

load and resistance factors given in design standards.  These factors are calibrated such that

structural members designed according to codes meet, on average, a set of pre-selected target

reliability levels (Ellingwood et al. 1980).  Therefore, it is expected that a well-designed

structural system is at least as safe as the most critically loaded structural element since the

system reliability is always larger than or equal to the element reliability.  However, quantitative

assessment of the system reliability is much more difficult than that of a structural element.

System reliability evaluation of steel frame structures has been reported in the literature (Kam et

al. 1983; Thoft-Christensen and Murotsu 1986; Bennett and Ang 1987; Zimmerman et al. 1992,

Haldar and Zhou 1992; Zhao and Ono 1998; Zhou and Hong 2000).  The approaches taken by

these studies can be divided into two categories.  The first one is the failure modes based

approach and the second one is the collapse load factor based approach.  The former requires

identifying all the dominant failure modes of the structure.  Unfortunately, efficiently and

robustly identifying all the dominant failure modes generally presents considerable difficulty.

Moreover, the computation of overall failure probability contributed from the dominant failure

modes is also a formidable task mainly due to the correlation among the failure modes.  The

latter is to use a limit state function of the system established directly from the so-called collapse

load factor of the system (Kam et al. 1983; Haldar and Zhou 1992; Zhao and Ono 1997).  The

collapse load factor based approach is further extended recently for nonproportional loading
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(Zhou and Hong 2000).  They showed that for typical low-rise industrial buildings the system

reliability is much higher than the reliability of the most critically loaded structural member due

to the beneficial effects of force redistribution.  The ratio between the probability of failure of

the most critical member and of the system ranges from 6 to 20 and depends on the structural

configuration, and the degree of redundancy.

In this study, the collapse load factor based approach is adopted for the reliability evaluation

of the steel frame systems with rigid and semirigid connections.  For the numerical evaluation

simple Monte Carlo technique is employed.  The estimated reliabilities for frames with semirigid

connections are compared to those of identical frames but with rigid connections.  Detailed

analysis procedure and results are presented in the following sections.

2.0  Limit state function and analysis procedure

2.1  Limit state function

Let P and R denote the vectors of random variables that represent the external loads and the

resistance of the structure, respectively.  P may include the dead load, live load, and

environmental loads while R may include the yield strength and modulus of elasticity of steel,

cross-sectional properties of structural members, and the geometry of the structure.  Further let p

and r denote values of P and R, respectively.  For a given structure with resistance r subjected to

loads p that are applied proportionally, the load carrying capacity of the structure can be

expressed as λp, where λ that depends on p and r is known as the load factor or the collapse load

factor in the plastic analysis.  Therefore, λ > 1.0 indicates that the structure can withstand load p

while λ ≤ 1.0 indicates that the structure will collapse under p.  The values of P and R leading to

the collapse can be expressed as gs(r,p) ≤ 0, where

gs ( , ) ( , )r p r p= −λ 1 (1)

gs(•) represents the limit state function, and λ = λ( , )r p  is used to emphasize that λ is a function

of r and p.

The collapse load factor λ( , )r p  can be evaluated by one of the many second-order inelastic

frame analysis methods which take into account the interaction between the axial load and



5

bending moment, initial imperfections, the geometric nonlinearity (second-order effects), and the

distributed plasticity (Chen et al. 1996).  A plastic-zone analysis that includes distributed

yielding effects, residual stresses, initial geometric imperfections, and many other significant

behavioral effects will certainly be the most refined and accurate one.  However, this model is

too computationally intensive to be employed in the probabilistic analysis.  A second-order

elastic-plastic hinge analysis that employs concentrated plastic hinges is computationally

efficient.  However, it can lead to significantly unconservative errors (Liew 1992).  To overcome

the inaccuracy of the plastic-hinge analysis, Liew (1992, see also Chen et al. 1996) proposed a

second-order refined plastic-hinge model which uses a column tangent-modulus to represent the

distributed yielding due to axial-force effects and a plastic-hinge stiffness-degradation model to

represent the distributed yielding due to flexure.  They implemented this model in a program

called PHINGE and obtained numerical results suggesting that the model provides sufficiently

accurate predictions for a wide range of structures.  Therefore, by considering both accuracy and

numerical efficiency, the refined plastic-hinge model is adopted in this study for evaluating

λ( , )r p .

If the semirigid connection is considered, the rigidities of the connections represented by the

slope of the connection moment M  and the connection relative rotation θr  given by Chen et al.

(1996) in the following is adopted,

( )
( )( )( )

M
M R

M R
Mr u ki

r u ki

n n u=
+
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/ /

/ /
/
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In the above equation, Mu is the ultimate moment capacity of the connection, Rki is the initial
connection stiffness and n is a shape parameter.

2.2  Analysis procedure

Based on the established limit state equation shown in Eq. (1), the probability of failure of

the structure, Pfs, can be expressed as

P f f d dfs
gs

=
<
∫ R Pr p r p( ) ( )

0

(3)
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where fR r( )  is the joint probability distribution function of the resistance, fP p( )  = joint

probability distribution function of the loads.

The integral equation shown in Eq. (3) may be evaluated using the first order reliability

method (FORM) (Madsen et al. 1986) and simple simulation technique.  The FORM is very

efficient if gs(r,p) is smooth such that its first order derivatives exist.  Since the failure of the

system may be contributed from different failure modes, the use of the FORM may lead to error

because its use for the limit state surface with multiple local minimum points may not be

adequate.  The simple simulation technique is less computationally efficient than the FORM, and

its accuracy is not affected by multiple failure points on the limit state surface.  Furthermore, the

simulation is straightforward for implementation, and numerical difficulties are not likely to

occur during the analysis.  Therefore, this method is employed for the numerical analysis results

presented in the next section.

3.0  Numerical results

For the numerical analysis, four steel frames shown in Figures 1 to 4 (Chen et al. 1996), two

with rigid connections and two with semirigid connections, are considered.  Two of the frames

are unbraced and the other two are braced.  Both pinned base and rigid base are considered.

The nominal steel yield strength is 248 (MPa).  The design yield strength is taken as 0.9

times the nominal yield strength.  Frames are subjected to the live load and dead load. All beams

are modeled by four discrete elements in order to detect the possible formation of plastic hinges

within a beam and, all columns by one element due to the absence of transverse loads.  The

gravity loads are applied as point loads at the beam quarter points.  The loads are applied at the

nodal points in 5% increments with respect to the full factored loads.  The dimensions and the

loads are also shown in Figures 1-4.  The loads shown on the figures are the factored loads

which include both dead and live loads.  The nominal dead to live load ratio is considered to be

equal to one.  The dead load factor of 1.20 and the live load factor of 1.60 are employed to

calculate the nominal dead and live loads.

For the reliability analysis, dead load and live load are considered.  These loads and the steel

yield strength are considered random.  The statistics of the random variables used for the

reliability analysis are shown in Table 1.  These statistics are in agreement with those used by
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Galambos and Ravindra (1978) and Ellingwood et al. (1980) for design code calibration studies.

The random variables are assumed to be independent of each other and the loads on different

floor levels are fully correlated to each other.  For the numerical evaluation, geometrical

uncertainties are neglected.  Further, the uncertainty associated with stiffness of semirigid

connection is ignored.  The values of the parameters for the stiffness of the semirigid

connections (see Eq. (2)) employed are Mu = 200.4 (kNm), Rki =107832.1 (kNm/rad) and n = 0.8.

The system reliabilities obtained using the procedure outlined in previous section with a

simulation cycle of 50000 are shown in Table 2 for the frames.  The table also shown the

corresponding reliability index β which is commonly considered for the design code calibration

studies.  This index β is obtained from )(1
fsP−Φ , where )(1 •Φ−  represents the inverse of

standard normal distribution function.

The results shown in Table 2 suggest that the system reliability of the semi-rigid frames

is less than that of the rigid frames with identical element.  Comparison of the results for

the frames with fixed base and for the frames with pinned base suggest that under vertical

loads the condition of the support is not very significant, especially, if the frames are

unbraced.  The probability of failure of the braced frames is smaller than that of unbraced

frame.  This is expected since no lateral loads are considered and the bracing is usually

employed for system stability and for controlling the lateral drift.  In almost all cases, the

failure probabilities of frames with semi-rigid connections appeared to be about 3 times

less than those of frames with semirigid connections.  This difference in probability of

failure which is less than an order of magnitude may be considered to be not very

significant since the use of the load and resistance factors suggested in design codes may

leads to the designed structural members having such a different failure probability level.

4.0  Discussion and conclusions

An procedure for evaluating the system reliability of steel frame systems is outlined

and employed for numerical analysis.  The approach based on the collapse load factor is

taken to establish the limit state function.  The analysis results for four pairs of steel frame

structures showed that ignoring the connection flexibility can be unconservative.   In

almost all cases, the failure probabilities of frames with semi-rigid connections appeared to

be about 3 times less than those of frames with semirigid connections.  Form reliability
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point of view, this difference in probability of failure which is less than an order of

magnitude may be considered to be not very significant since the use of the load and

resistance factors suggested in design codes may leads to the designed structural members

having such a different failure probability level.  However, it could impact the estimated

expected cost which includes the initial cost and cost of collapse of a structural system.

It must be emphasized that this study is focused on the effect of the connection

flexibility on the system reliability of steel frame structures.  Further, only vertical loads

are considered and the possible uncertainty associated with semirigid connections is

ignored.  The conclusions reached should be verified for frames subjected to horizontal

loading due to earthquake and wind loads and for frames with uncertain rigidity of flexible

connections.

5.0  Acknowledgements

The financial support of ICLR is gratefully acknowledged.

REFERENCES

Bennett, R. M. and Ang, A. H.-S. (1987).  "Formulation of Structural System Reliability."

Journal of Engineering Mechanics, ASCE, 112(11), 1135-1151.

Chen, W. F., Goto, Y., and Liew, J. Y. R. (1996).  Stability Design of Semi-rigid Frames.  John

Wiley & Sons, Inc., New York.

Ellingwood, B., Galambos, T. V., MacGregor, J. G., and Cornell, C. A. (1980).  "Development

of a probability based load criterion for American national standard A58."  Spec. Pub. No.

577, National Bureau of Standards, Washington, D.C.

Galambos, T. V. and Ravindra, M. K. (1978).  "Properties of Steel for Use in LRFD."  Journal of

the Structural Division, ASCE, 104(9), 1459-1468.

Haldar, A. and Zhou, Y. (1991).  "An Efficient SFEM Algorithm for Nonlinear Structures."

Computational Stochastic Mechanics, Computational Mechanics Publications, Southampton,

851-862.

Kam, T. Y., Corotis, R. B., and Rossow, E. C. (1983).  "Reliability of Nonlinear Framed

Structures."  Journal of Structural Engineering, ASCE, 109(7), 1585-1601.



9

Liew, J. Y. R. (1992).  "Advanced Analysis of Frame Design."  PhD Thesis, Purdue University,

West Lafayette, IN.

Madsen, H. O., Krenk, S., and Lind, N. C. (1986).  Methods of Structural Safety.  Prentice-Hall,

Englewood Cliffs, N.J.

Throft-Christensen, P. and Murotsu, Y. (1986).  Application of Structural Systems Reliability

Theory.  Springer-Verlag, Berlin.

Zhao, Y. G. and Ono, T. (1997).  "System Reliability Evaluation of Ductile Frame Structures."

Journal of Structural Engineering, ASCE, 124(6), 678-685.

Zhou, W and Hong, H. P. (2000)  "Reliability Analysis of Steel Frames."  Proceedings of 28th

Annual Conference of the Canadian Society for Civil Engineering, London, Ontario.

Zimmerman, J. J., Ellis, J. H., and Corotis, R. B. (1993).  "Stochastic Optimization Models for

Structural Reliability Analysis."  Journal of Structural Engineering, ASCE, 119(1), 223-239.



10

List of Figures

Captions

Figure 1. Rigid braced frame subjected to factored loading.

Figure 2  Rigid unbraced frame subjected to factored loading.

Figure 3. Semirigid braced frame subjected to factored loading.

Figure 4  Semirigid unbraced frame subjected to factored loading.
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Table 1.  Statistics of the random variables

Random Variable Mean/Nominal Coefficient of Variation Probability Distribution Type

Dead Load 1.0 0.08 Normal

Live Load 1.0 0.25 Gumbel

Steel Yield Strength 1.05 0.10 Lognormal

Table 2.  Comparison between the semi-rigid frame and rigid frame with fixed base

Base fsP or β Rigid frame
(rigid connections)

Semi-rigid frame
(Semirigid connections)

Unbraced Braced unbraced Braced

Fixed base fsP 0 26 10 3. × − < × −0 2 10 4. 31076.0 −× 31074.0 −×

β 3.46 > 410. 3.17 3.18

Pinned base fsP 31029.0 −× 31026.0 −× 31075.0 −× 31072.0 −×

β 3.44 3.46 3.18 3.19
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Figure 1.  Hong and Wang.
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Figure 2.  Hong and Wang.
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Figure 3.  Hong and Wang.
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Figure 4.  Hong and Wang.
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