

Mapping the Future Flood Risk in the City of London

Slobodan P. Simonovic

The University of Western Ontario The Institute for Catastrophic Loss Reduction

Presentation outline

- Research context introduction
- Methodology
 - Climate change
 - Hydrologic input
 - Hydraulic modeling
- Use of flood maps
- Implications
- Future work

Research context

- The City of London: Vulnerability of Infrastructure to Climate Change, City of London
- Quantifying the Uncertainty in Modelled Estimates of Future Extreme Precipitation Events, *Canadian Foundation for Climate and Atmospheric Sciences*

Research context

- The City of London: Vulnerability of Infrastructure to Climate Change
 - The main objective of the study is to provide an engineering assessment of the vulnerability of London's public infrastructure to changing climate conditions - flooding.
 - An original systematic procedure is used to gather and examine available data in order to develop an understanding of the relevant climate effects and their interactions with infrastructure.
 - The key steps:
 - Inventory of infrastructure components;
 - Data gathering and sufficiency;
 - Qualitative vulnerability assessment;
 - Quantitative vulnerability assessment; and
 - Prioritization of the infrastructure components based on the level of risk.
 - The elements of infrastructure to be considered generally will include: buildings within and adjacent to the flood lines, roads, bridges, culverts, wastewater treatment plants, storm water management network, etc.

Methodology

- Climate change impacts
 - GCM and historic data precipitation scenarios
- Hydrologic modeling
 - River flows
- Hydraulic modeling
 - Floodplains mapping
- Vulnerability analyses
 - Risk to municipal infrastructure

Climate change impacts

- Weather generator
 - Simulate weather data conditioned upon alternative climate change scenarios for the Upper Thames River Basin
 - Develop a weather model that allows nearest neighbour resampling with perturbation of the observed data
 - Create an ensemble of climate change scenarios for the basin
 - Historic climate change scenario
 - Wet climate change scenario

Climate change impacts

- K-NN algorithm
 - Capable of modelling non linear dynamics of geophysical processes
 - Knowledge of the probability distribution of variables not required
 - Dependence among variables is very well preserved
 - Time correlations between variables are adequately preserved
 - Spatial correlations between variables are also well preserved

Climate change impacts

Simonovic

February 2009

- Single-event precipitation-runoff transformation
- Continuous precipitation-runoff transformation
- Snow accumulation and melt

Byron

Simonovic February 2009

- Floodplain mapping
- Climate change scenarios future risk
 - Development of hydraulic model
 - Testing of the model with historic data
 - Change of flood inundation

Simonovic

Western

22

Simonovic

25

26

Use of floodplain maps

Flood	Climate Scenario	Area (m²)	Change		No. Homes	No. Buildinas	Proportion Affected (Census Data)*	
			Area (m²)	%	Flooded	Flooded	Pop.	Dwellings
100- year	Historic	5,291,440			1,141	34	7,701	3,969
	Dry	3,930,436	-1,361,004	-25.7	68	18	4,881	2,521
	Wet	5,595,988	+304,548	+5.8	1,249	42	7,949	4,109
250- year	Historic	5,858,976			1,376	58	8,474	4,381
	Dry	5,101,848	-757,128	-12.9	1,059	33	7,351	3,802
	Wet	6,116,988	+258,012	+4.4	1,486	59	8,745	4,543
500- year	Historic	6,268,729			1,560	71	9,119	4,740
	Dry	5,362,852	-905,877	-14.5	1,155	36	7,717	3,988
	Wet	6,567,292	+298,563	+4.8	1,690	83	9,388	4,886

Implications

Simonovic

February 2009

30

Implications - Regulatory

- Issuing of permits for floodplain development (including construction of roads, buildings, bridges, culverts, drains, sewer systems, etc);
- Use of river and its adjacent park land for recreation;
- Removal of pumping stations near area rivers during the course of a flood;
- Patrolling of river banks during periods of high water levels and monitoring performance of critical infrastructure (such as roads, bridges, culverts, drains, sewer systems);
- Revision of reservoir operating procedures (including smaller dams, weirs, outflows, etc.); etc.

Friday Forum

Implications - *Regulatory*

100 yr

Simonovic

Friday Forum

Implications - *Regulatory*

250 yr

33

Implications - Engineering

 Changes in design standards for municipal infrastructure (roads, buildings, bridges, culverts, drains, sewer systems, treatment plants, etc).

Implications - Engineering

Implications - *Budgetary*

- Allocation of budget for safe operation and maintenance of existing flood management infrastructure;
- Planning for future infrastructure;
- Valuation of current structural and nonstructural measures (reservoirs, dykes, floodwalls or implementation of land use zoning practises, flood warning systems, waterproofing, etc.); etc.

Implications - Inconvenience

Simonovic

Work in progress

- Quantifying the Uncertainty in Modelled Estimates of Future Extreme Precipitation Events, Canadian Foundation for Climate and Atmospheric Sciences
- An Update of Rainfall Intensity-Duration-Frequency Curves for the City of London Under the Changing Climate, City of London
- The City of London: Vulnerability of Infrastructure to Climate Change, City of London

