Understanding the Characteristics of Hailstorms and Hail Damage through Laboratory and Field Research

Tanya M. Brown-Giammanco, Ph.D. IBHS Lead Research Engineer & Director of Hail Research

> Ian Giammanco, Ph.D. IBHS Lead Research Meteorologist

IBHS Mission:

"To conduct objective, scientific research to identify and promote effective actions that strengthen homes, businesses, and communities against natural disasters and other causes of loss."

Outline

- Weather Related Risks
- IBHS Hail Field Measurement Program
- Building Vulnerabilities
- Asphalt Shingle Impact Resistance Performance
- Loss Mitigation
- Roofing Industry Best Practices
- Q&A

Insurance Implications

- Underwriting better understanding of vulnerability and how to reduce it
- Pricing more accurately assessing the interaction between weather and the built environment
- Claims providing new tools for adjustment
- Identifying and reducing fraud

Loss Estimates

- 2015
 - US losses > \$25 billion (\$15 billion insured)
 - Winter storm losses = \$2.1 billion insured
 - Severe thunderstorm losses >\$9.4 billion insured
 - Drought = \$1.2 billion insured

Loss Events in the U.S. (1980-2015)

Source: © 2016 Munich Re, NatCatSERVICE. As of January 2016.

Average Annual US Hail Losses

- Crop-damaging hail = 158 days
- Property-damaging hail = 123 days
- Crop losses = \$580 million
- Property losses = \$850 million
- At least **13 days** per year with crop losses > \$1 million
- At least 15 days per year with property losses > \$1 million

Source = "Hailstorms Across the Nation" (Changnon et al 2009)

IBHS Hail Field Measurement Program: What do we need in the lab?

IBHS Hail Field Measurement Program

• Mission: Safely collect measurements of the physical properties of hail

IBHS Hail Field Measurement Program: Size – Mass Relationship

Evaluating hailstone shape

Z-4 0

Hail Size, Shape, Mass: Effects

- Applying new understanding of aerodynamic drag on hail (Heymsfield and Wright 2013)
- Impact test standard KE likely too high (based on Laurie 1960)
- Departure from spheres drives this

Hail Size, Shape, Mass :Kinetic Energy

Hail size, shape, mass – Kinetic energy

- Lacking in-situ kinetic energy measurements
- KE inferred from hail pads, drag assumptions etc...
- "You can learn a lot by looking"

IBHS Hail Field Research Disdrometers

What else do we need to replicate?

Comparing Strength of Hail to Lab Test Standards

- Natural hail on average slightly stronger than average FM 4473 spheres
- Wide range for natural hail
 - Process of FM 4473 produces variability
- Large sample sizes needed for impact testing

Comparing Strength of Hail to Lab Test Standards

- QUESTIONS
- Does "more dense = harder"?
- Are strength and density really related?
- In the lab, can change strength without changing density.

Hypothesis: Hailstone strength is better correlated with radial distribution of density, not bulk density

Ongoing Research Collaborations

Texas Tech

HAIL DISDROMETERS

Penn St.

DUAL-POL RADAR HAIL DETECTION

STORM-SCALE MODELING OF HAIL

NCAR HAIL AERODYNAMICS MICROPHYSICS

HAILPAD DATABASE

Building Vulnerabilities: Factors Affecting Hailstorm Risk

- Building materials
 S
- Material age/condition
- Impact resistance rating of roofing materials

 Sheltering of the building

- Hailstone hardness
- Wind speed/direction

Source = "Evaluating Hail Damage Using Property Insurance Claims Data" (Brown et al 2015)

Component Vulnerabilities to Hail

Components

- Roof
- Siding
- Windows and screens
- Doors
- Trim
- Railings
- Decks
- Fences
- Equipment

Damage Modes

- Spatter marks
- Dents
- Cracks/tears
- Paint/finish/coating removal

Component Vulnerabilities to Hail

From "Weather and Extended Coverage" (Collins & Howe 1964)

From "Claims Analysis Study of May 24, 2011 Hailstorms in Dallas-Fort Worth" (Brown & Pogorzelski 2013)

Component Vulnerabilities to Hail

From "Evaluating Hail Damage Using Property Insurance Claims Data" (Brown et al 2015)

Roof Vulnerabilities to Hail

Roof Vulnerabilities to Hail

From "Hail Damage Threshold Sizes for Common Roofing Materials (Marshall et al 2002)

Asphalt Shingle Impact Resistance: What we need to know

At what point does the shingle lose its water shedding ability?

What does the relationship actually look like?

How do the effects of aging play a role?

IBHS Hail Research: Steel Ball Impacts

Asphalt Shingle Impact Resistance

UL 2218 Impact Location Passing Rates: 3-tab vs. IR 3-tab Shingles

UL 2218 Impact Location Passing Rates: Architectural, IR Architectural and **Premium Architectural Shingles**

100%

Asphalt Shingle Impact Resistance

UL 2218 Impact **Location Passing Rates: Polymer Modified IR** VS. **Traditional IR** Shingles

Class 1

Impacts

IBHS Hail Research: Ice Ball Impacts

Concerns with Standard Impact Tests

- None of the IR shingles passed!
- Some damage modes from steel balls are not realistic
- Kinetic energies may be too high
 - Pure ice density assumption
 - Incorrect terminal velocity assumptions
- Inconsistencies among ice balls
- Only evaluate new products

Same impact energy!

IBHS ice ball aged shingle

Pure ice ball – new shingle

Where do we go from here?

Automated Hail Machine

Future Full-Scale Research

What about Aging/Weathering?

Aging/Weathering Implications

- At what point does the hail performance of IR shingles degrade? How much?
- Are there initial conditions that must be met to assure shingles seal at time of installation?
- At what point do shingle sealants lose adhesion?

Where Does it Land? FORTIFIED Home

Roof and Attic Vent System

Roof

Openings, Gables and Attached Structures

Gables, Porches, Carports and Chimneys

Garage Doors and Structure (CLP)

Location and Design Wind Speed are key determining factors in deciding which standard(s) apply.

Roofing Industry Collaborations

Roofing Best Practices

Coming Soon!

Partnership between IBHS, RICOWI, & several roofing industry trade associations

Topics

- Installation
- Maintenance
- Damage ID
- Repair vs. Replace
- Product Manufacturing & ID

Audiences

- Contractors
- Inspectors & Code Officials
- Roofing Consultants
- Insurance Professionals
- Building Owners

Please visit www.disastersafety.org Email: tbrown@ibhs.org igiammanco@ibhs.org @tanya_bg_wx @igiammanco33 @IBHSHailStudy @disastersafety

