

ICLR Friday Forum CANADIAN CATASTROPHE RISK & MODELING – 2012 AND BEYOND

September 14", 2012

Anya Sri-Skanda-Rajah, FCAS, FCIA Ken Mok, CRM, FCIP

Catastrophe Modeling – 2012 and Beyond Agenda

- Current landscape: Recent events and the state of the market
- Model availability and usage for Canadian perils
- Model enhancements expected in the future
- Managing model change and uncertainty
- Model result blending and customization

Section 1

Current Landscape: Recent Events and the State of the Market

Current Landscape 2011: Active Cat Year for Canada

			Insured Loss
Date	Place	Event	(CAD)
March 5-7	Quebec, Ontario	Winter Weather, Heavy Rainfall	50,000,000
April 14 - May 31	Manitoba	Assiniboine River Floods	160,000,000
April 27-28	Ontario, Quebec	Storms with gusts up to 100km/hr, hail	210,000,000
May 14-17	Alberta	Slave Lake wildfire	700,000,000
July 18-19	Alberta, Manitoba, Saskatchewan	Thunderstorms, heavy winds, rain, hail, tornadoe	185,000,000
August 21	Ontario	F3 tornado, hail, winds, flooding	135,000,000
August 28-30	New Brunswick, Ontario, Quebec	Hurricane Irene post tropical flooding, wind	130,000,000
November 27	Calgary, Alberta	Windstorm up to 149 km/hr	200,000,000
			1,770,000,000

Source: Swiss Re 2011 Sigma Report

- 1998 and 2009 were higher
 - 1998 \$2.3 bln CAD in 2011 dollars
 - Primarily Jan '98 Quebec Icestorm
 - 2009 \$2.1 bln CAD in 2011 dollars
 - Primarily 3 Alberta weather events

Current Landscape Global Cat Events

2011 and 2012 Compared at June 30th

Current Landscape Events Shape Catastrophe Market

January 2011 Catastrophe Cover Renewals

Hard

Soft

Auto/Casualty

Upward Pricing Limited Capacity Few Markets

Catastrophe

Downward Pricing Strong Capacity Many Markets

Property Risk

Downward Pricing Strong Capacity Many Markets

Current Landscape Events Shape Catastrophe Market

January 2012 <u>Catastr</u>ophe Cover Renewals

Hard

Soft

CatastropheUpward Pricing
Limited Capacity
Many MarketsEven Pricing
Good Capacity
Many MarketsCool Capacity
Many Markets

- The global market was well positioned to absorb big hits in 2011
- · Cat pricing hardened in Canada more than some had anticipated
- · Exposures were up, limits increased, and the cat spend grew

Current Landscape Events Shape Catastrophe Market

Anticipated Mid 2012 to January 2013 Catastrophe Cover Renewals

Hard

Soft

CatastropheFlat to Soft Pricing
Limited Capacity
Many MarketsEven Pricing
Good Capacity
Many MarketsEven Pricing
Good Capacity
Growing Markets

Model Availability for Canadian Perils

What Questions Are Catastrophe Models Designed to Answer?

- Where are future events likely to occur?
- How intense are they likely to be?
- For each potential event, what is the estimated range of damage and insured loss?

Catastrophe models are designed to estimate the probability of loss severity. They are not intended to forecast future events.

GUY CARPENTER

Catastrophe Model Evolution Changing Risk Landscape 2005

2001

Crisis

ERM Increased Regulatory Oversight

Re-adjust Frequency, Severity assumptions

Rating Agency Increases Capital Requirements

Loss Correlation / Data Rapidly Improving

Capital Markets Enter into Reinsurance

Models Go Worldwide / Influence Rate Adequacy

Rating Agencies Empowered

Poor Data / Limited Models

With each market turning event, the industry realized it had more exposure than previously believed

Cat Management

1992

Andrew

Catastrophe Modeling and Model Vendors

Risk Management Solutions R M S

AIR WORLDWIDE

Other models

GUY CARPENTER

• Founded at Stanford University in 1988

• World's leading provider of products and services for the quantification and management of catastrophe risks

- Grew in the 1990s, expanding services and perils covered
- Founded in 1987
- Pioneered the probabilistic catastrophe modeling technology
- Founded in 1980s
- One of first catastrophe models in industry
- Most large reinsurers and other risk management companies have developed their own in-house models

Current Canadian Licensed Modeling Capabilities

- RMS

- Earthquake
- Fire-Following Earthquake
- Severe Convective Storm (Tornado, Hail, Lightning and Straight-Line Winds)
- Winterstorm (Freeze, Snow, Wind and Ice)
- North Atlantic Hurricane (new to RMS v11.0)
- EQECAT
 - Earthquake
 - Fire-Following Earthquake
- AIR
 - Earthquake
 - Fire-Following Earthquake (not for automobiles)
 - Severe Thunderstorm

Current Model Versions

Model / Peril	RMS RiskLink	AIR CLASIC/2	EQECAT
Earthquake	2009	2005	2011
Fire Following	2009	2005	2011
Severe Storm	2008	2005	NA
Winter Storm	2008	NA	NA
Hurricane	2011	NA	NA

Catastrophe Model Use in Canada by Peril Earthquake

- Available Models: RMS, AIR, EQECAT
- Usage:
 - RMS is widely used as compared to AIR / EQECAT in the industry
- Latest Updates:
 - RMS: 2009
 - Western Canada PMLs increased about 30%
 - Clients generally bought more cat limit and there were no capacity issues with the reinsurers
 - EQECAT: 2011
 - AIR: 2005

Catastrophe Model Use in Canada by Peril Severe Storm

- Available models: RMS and AIR
- Usage:
 - RMS is widely used as compared to AIR in the industry
- Latest Updates:
 - RMS updated their SCS model in 2008 (RiskLink v8.0)
 - Losses decreased approximately 30% pending geography and LOB
 - AIR's last Severe Storm model update was in 2005.

Catastrophe Model Use in Canada by Peril Winter Storm and Hurricane

- Available models: RMS
- Usage:
 - RMS only
- Latest Updates:
 - Winterstorm initial release in 2008
 - Hurricane initial release in 2011

Catastrophe Model Industry Loss

RMS Industry Loss Contribution by Province / Peril

GUY CARPENTER

RMS Industry Loss Contribution by Province / Peril

GUY CARPENTER

Earthquake Industry Loss Comparison

Canada Total (MIns CAD)				British Columbia (Mlns CAD)			
Return Period	Model X	Model Y	Index Y/X		Model X	Model Y	Index Y/X
500	18,952	34,190	1.80		16,678	20,725	1.24
400	16,943	28,538	1.68	-	14,761	17,011	1.15
250	13,266	18,462	1.39		11,529	10,117	0.88
50	738	1,386	1.88		258	407	1.58
AAL	175	331	1.89		123	154	1.26
	Ontario (N	vIns CAD)			Que	bec (MIns	CAD)
500	211	960	4.55		1,503	12,624	8.40
400	168	634	3.78		1,188	9,070	7.63
250	87	209	2.40		645	4,090	6.34
50	6	0	0.00		61	115	1.90
AAL	4	19	5.26		48	157	3.24

Severe Storm Industry Loss Comparison

Canada Total (MIns CAD)				Alberta (MIns CAD)		
Return			Index			Index
Period	Model X	Model Y	Y/X	Model X	Model Y	Y/X
500	2,463	5,817	2.36	906	5,473	6.04
400	2,225	5,584	2.51	848	5,096	6.01
250	1,773	4,836	2.73	721	4,503	6.25
50	741	2,439	3.29	321	2,119	6.60
AAL	356	514	1.44	83	301	3.63

Manitoba (MIns CAD)				Ontario (MIns CAD			
500	478	569	1.19	2,208	2,304	1	
400	429	517	1.21	1,971	2,036	1	
250	338	358	1.06	1,518	1,594	1	
50	123	80	0.65	512	458	C	
AAL	23	11	0.48	154	98	C	

Qu	Saska			
500	846	1,204	1.42	29
400	732	982	1.34	2
250	537	806	1.50	18
50	223	347	1.56	-
AAL	52	60	1.15	1

Saskatchewan (MIns CAD)						
295	765	2.59				
257	670	2.61				
189	459	2.43				
70	92	1.31				
18	15	0.83				

1.04 1.03 1.05 0.89 0.64

GUY CARPENTER

Non-Modelled Perils Tsunami

- Tsunami Risk
 - Canada working on a National Hazard Map for Tsunami
 - Expected to be an area of interest for commercial model development in the future
- Canada Tsunami Risk
 - Vancouver Island
 - B.C. Coast
 - Baffin Island
 - Mackenzie Delta
 - St. Lawrence Estuary
 - Atlantic Coast

Graphic from Natural Resources Canada

Non-Modelled Perils Wildfire

- Slave Lake \$700-\$750M CAD Insured Loss
 - 2nd largest cat loss in Canada history
 - ~50% of wildfires caused by humans

Photograph by: Caezer Ng/The Lakeside Leader, edmontonjournal.com

Non-Modelled Perils Wildfire

Slave Lake Wildfires – May 2011

2011 Exposure – i-aXs RealCat

Non-Modelled Perils Flood

- Flood May/June 2011
 - Insured Loss
 - \$160M CAD
 - Total Economic Loss
 - \$815M CAD

The Assiniboine River threatens to breach the 18th Street Bridge in Brandon, Man. on May 11. The province has announced that a controlled breach of a dike is set to occur on May 12. (David Lipnowski/Canadian Press)

Model Enhancements Expected in the Future

Upcoming Model Changes

• RMS

- No Canadian model updates currently planned
- Next Generation Platform scheduled for 2014
- Respond to 2015 GSC update

• EQECAT

- No Canadian model updates currently planned
- RQE scheduled for late 2012
- Research efforts underway on liquefaction, underwater landslide, tsunami, windstorm, hail, and flood

• AIR

- Earthquake, Severe Storm, and Winter Storm likely in 2014
- New Hurricane model likely in 2014

Section 4 Managing Model Change and Uncertainty

Major Sources of Uncertainty Cat Models

- Data
 - Address Information
 - Multi location
 - Insurance to value and other coverage issues
 - Imperfect sight into risk characteristics

Courtesy of AIR Worldwide / EERI

- Hazard
 - Lack of history of large earthquakes limits our ability to simulate them
 - We rely on indirect sources of information, like GPS measurements or paleo-seismology (e.g. historical liquefaction)
 - We know relatively little about seismicity potential in areas of low seismicity (like in Eastern Canada)
 - Even in areas of high seismicity like southwestern Canada, there is a limited amount of data and there is room for the unexpected (Japan M9.0 in 2011, for example)
- Engineering
 - Limited claims data for catastrophic events
 - Lack of understanding of structural behavior under severe loads

Catastrophe Models An Imprecise Science

GUY CARPENTER

Catastrophe Models An Imprecise Science

If the (1999) cat model says: "Your 100 year return period loss is \$1,117,243,572," what it really means is: "Your 100 year return period loss is about a billion dollars; but it could be 500 million dollars or maybe two and a half billion dollars... something like that."

Catastrophe Models An Estimation of Model Uncertainty

Section 5

Catastrophe Model Result Blending and Customization

Current Cat Modeling Approach

GUY CARPENTER

GUY CARPENTER

Guy Carpenter's Model Suitability Analysis (MSA)SM

Client's View of Risk

Guy Carpenter's Model Suitability Analysis (MSA)SM

Client's View of Risk

36

Future Of Catastrophe Risk Analysis Model Customization

- Markets more willing to accept company specific views
- Rating agencies allowing – if not encouraging - a "Corporate View"
- Next Generation
 Platforms encourage sensitivity testing, transparency and multi model approach

Conclusion

Conclusion Some Basic Things to Remember Regarding Cat Risk

- Widespread and deep usage of models is relatively young
- Models are models: there are many uncertainties in them
- Data and scientific hypotheses all matter a lot
- Suitability analyses of models will be increasingly important
- Don't assume a catastrophe model is useful prove it useful yourself or rely on another to help

Recent Briefings and White Papers

- *Responding to Catastrophe Model Change* GC Briefing, October 2011
- Managing Catastrophe Model Uncertainty: Issues and Challenges GC Analytics White Paper, December 2011
- Beyond PML: A 360 Degree View of Risk GC Analytics White Paper, February 2012
- Spring Conditions Suggest Tempered Atlantic Hurricane Season GC Analytics White Paper, May 2012
- Cold Spots Heating Up: The Impact of Insured Catastrophe Losses in New Growth Markets GC Report, September 2012

Questions?

anya.sri-skanda-rajah@guycarp.com ken.mok@guycarp.com

CARPENTER