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Overview of Talk

® Overview of MEOPAR, a new national network

® Predicting storm surges with lead times up to 10 days

® Projecting flood probabilities over coming decades



MEOPAR in a Nutshell

® New network of centers of excellence

® Marine Environmental Observation Prediction and Response
® Reducing vulnerability to marine hazards and emergencies

® Established in 2013, headquartered at Dalhousie

e S25M over 5 years from NCE program

® May be renewed twice

® |nvolves 50 researchers from 12 universities

® Partners include EC, DFO, DND, DRDC, Lloyds Register, ICLR, ...
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A Relocatable e
Atmosphere-Ocean -
Prediction System

Who: Dr. Harold Ritchie,
Environment Canada/
Dalhousie University

What: A relocatable atmosphere-
wave-ocean forecast
system that can be set up
within hours of a marine

emergency.

Provide forecasts (hours to
Impact: days) of physical properties
of ocean and atmosphere
to help guide response to
an emergency. System to
be transferred to
Environment Canada for
operational use.
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Building Network of
Fixed Coastal Observing

& Forecast Systems

Who:

Dr. Jinyu Sheng, Dalhousie
Dr. Susan Allen, UBC

Build an integrated ’ ,
observation and prediction — R e
system for Halifax Harbour

and Strait of Georgia. s === e —_ =

Real-time forecasts of sea
level, waves, currents, bio-
geochemical properties for =
ports, municipalities, and the =
oil and gas sector.




Improving Surface s 4
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Drift Forecasts

Who:

What:

Impact:

Dr. Dany Dumont, UQAR

Improve surface drift
forecasts in seasonally ice-
infested seas. Some buoys
deployed by the UQAR ice
canoe team.

Respond to emergencies
along Canadian coasts e.g.,
a person or oil patch. Time
is key in ice-infested water.



Improving Sea Ice
Forecasts

Who:

Dr. Andrea Scott,
University of Waterloo

Method to use radar (SAR)
satellite images to improve
the monitoring of sea ice.

Accurate information about
sea ice conditions is critical
for weather forecasting and
safe navigation in ice-
covered regions.
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| Extreme Events in the
Marine Environment

Who: Dr. Gregory Flato,
Environment Canada/ Uvic

What: Develop ways to assess and
visualize changes in the marine
environment and the associated
risks on climate time scales.

The fishing industry and coastal
communities could. e.g., use risk
maps to manage their exposure to
extreme weather events.
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Biogeochemical Projections
Under a Changing Climate

Who: Dr. Katja Fennel,
Dalhousie University

What: Develop biogeochmical, predictive
models of the ocean and make
climate projections.

Assist planning by, e.g., fishing
industry, oil and gas industry, and
coastal communities.

Impact:



User-Driven Monitoring of
Adverse Marine and
Weather States in the
Eastern Beaufort Sea

Who: Dr. David Atkinson, UVic

What: Assess how large-scale weather
patterns adversely impact
marine transport and
industrial activity in eastern
Beaufort Sea.

Ensure marine operators, coastal
communities and emergency
response operators have access
to weather forecast information
to help plan operations.
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" MEOPAR’S Outcomes

COORDINATED
CANADIAN
APPROACH

INFORMED

SOCIETY TRAINED PEOPLE

e More people using e Bringing together e Ocean skills
research results researchers, industry, e Student mentoring
e Information about and NGOs
the ocean readily e Better techniques &
available policies

e Hazard management




Predicting Storm Surges

http://joansullivanphotography.com/STILLS/Climate-change
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With Lead Times up to 10 Days

Storm surges are an

ever present danger in
eastern Canada

Home damaged by the
storm surge of
December, 2010
Sainte Luce, Quebec



Flooding is Caused by Tide and Surge
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Forecasting Storm Surges

Surge models are usually based on two simple physical principles
expressed by the following equations:

Du T C julu
— =-fxu-gvV(n- —

a—n+V-(uH)=O
ot

Discretize on a grid with realistic coastlines and water depths.
Integrate through time with forecast wind to forecast surge.



* Model is 2D, based on POM

 Shelf and deep water,
Labrador to Gulf of Maine

* Driven by 10 day forecast winds
and air pressure

* Deterministic (1/30°)
* Ensemble (1/12°)

e 1 March 2013 to 31 March, 2014



3 day forecasts

Typical
Deterministic
Forecasts

5 day forecasts

Rimouski
Observations in black

7 day forecasts

15 Mar 2013 31 Mar 2013 15 Apr 2013 30 Apr 2013
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How Good are the Deterministic Forecasts?

For each of the 22 tide gauges calculate

2 _ Var(nobs = TImod) - error
Var(nobs) ObS
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Allowing for Uncertainty in Wind Forecasts
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Visualizing Ensemble Surge Forecasts

Pr(surge>0.4m) Median of peak times (h)

. IQR of forecast hour
al Lime ol peak

¢, Ensemble, p(q'9 » 0,6m)

0
I 5d forecast for
22 March 2013




5 Day Forecasts of Total Water Level

n=nr+hs

Hour of 22-Mar-2013

5d Forecasts
for Rimouski
22 March 2013

Observed
Deterministic
Ensemble



Projecting Flood Probabilities
Over Coming Decades

Such information is needed for sensible adaptation
strategies.

Problem is conceptually similar to predicting total water
levels 10 days into future.

Let’s start by looking at some observations from the long
Halifax sea level record.



Halifax Sea level (m)

Annual Means and Maxima for Halifax

Annual Maxima
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Halifax
1920-2001

Offset due
to tides



~ Annual Maxima About Annual Means

Halifax Annual Maxima About Annual Mean (in m)
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"~ Probability of Flooding Today

Halifax return levels (m) for present day

Halifax 1.8
return level
about mean 5
(m) e
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* 100y Projections of Flood Probabilities

Simplest approach: Assume mean sea level will increase
by fixed amount and just raise return levels.
“Deterministic”.

But sea level increase over next century is highly

uncertain (e.g., uncertain emission scenarios, model
errors).



Projected Sea Level Rise Over Next Century

Global mean sea level rise
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How can we include such uncertainty in projections of
flooding probability? What are the practical implications?
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Mean over
2081-2100

RCP4.5

RCP6.0

RCP8.5

IPCC, 2013:

Summary for
Policymakers.
Figure SPM.9

“medium
confidence”



Projecting Probability of Total Water Level

Write annual maximum as sum of annual mean and a deviation:
=01+l
Assume pdfs for these two components are of form:

P(14) = W0(1, —Ng) + W01 —Nsp) + ...
P(15) = ¢ (M)

The pdf of annual maximum is convolution of these two pdfs.



Iealized Example

Assume there are only possible SLR scenarios:

S1: Sea level rises at 0.3m per century P(S1)=0.8
S2: Sea level rises at 1.0m per century P(S2)=0.2
Initial pdf Increase in MSL and realizations of annual maxima Final pdf

- 1,=[03, 1]
0=0.1 : w=[0.8, 0.2]

2020 2040 2060 2080 2100



mpact of Uncertamty on Return Levels

¢ - —no sea Ievel rise
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What Should Halifax Expect Today?

3

r— Preseht day
- Year 2100
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Flood level
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Expect one every
300y if present
conditions prevail

Charles et al., 2011
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What Should Halifax Expect in 21007

—— Present day
- Year 2100
5 Probability of
Flood level exceeding high
(m) flood levels is
21t 1 determined by
"""" ’ == | more extreme,
' | but less likely,
scenarios
5
{4y
1 — e )

Average time between floods (years)



Conclusions

® Trend toward probabilistic predictions and projections of
sea level, based on ensembles and expert knowledge.

® Uncertainty is not a sign of bad models or science.

® Surge predictions are improving (known unknowns).
Expect rapid improvements over next five years.

¢ Climate projections more complex (unknown unknowns?)
Better understanding may lead to greater uncertainty.

e \Work presented here illustrates a small part of the
research being conducted by MEOPAR.
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mpact of Uncertainty on Probability,

and Number of Floods with Time

1

Probability of no exceedances up to given year
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Expected number of exceedances up to given year

Is2m 10

T T I I I T I I I

no rise, a=0
a1=0.3 m per century

a2=1 m per century

uncertain rise, w=[0.8, 0.2]
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