Weeping Tile Disconnection to Reduce the Impact of Basement Flooding London, Ontario

September 19, 2013

City of London

Environmental and Engineering Services Department

Today's presentation

- Document a pilot project involving weeping tile disconnection, initiated by the City of London
- Objective to decrease Inflow and Infiltration in the sanitary sewers to reduce the risk of basement flooding
- Project undertaken Summer 2013

Outline

- Terminology
- Background:
 - What causes basement flooding?
- Pilot Project: Sherwood Forest Subdivision

Terminology

Sump Pump Diagram

Basement Flooding

- What is Inflow/Infiltration (I/I)?
 - Stormwater and/or groundwater entering sanitary sewers
- Excessive I/I can lead to surcharged/overloaded sanitary main
 - Widespread issue, generally affects multiple homes on a street

Sources of I/I

- Weeping tile connections
 - Lot grading sloped towards house
 - Downspout discharge location (at or near foundation wall).
 - Clay soils
- Combined sewers
- Old pipes, cracks, etc

London's Weeping Tile History

- Prior to 1985:
 - weeping tile connected to sanitary sewer
- 1985-1995:
 - weeping tile connected to sump pit; sump pump discharge to surface
- 1995-present:
 - weeping tile connected to sump pit; sump pump discharge to storm sewer PDC

Sherwood Forest Subdivision

- Subdivision developed late 1970s to early 1980s
- Historical basement flooding prone area

Flow Monitors

Blanchard Crescent, May 2009

Flow Monitors

Ardsley Crescent, May 2009

What's Happening?

- Weeping tile connected to sanitary → most homes pre 1985
- Clay soils → do not absorb water
- Lot grading has settled over the years →
 - water falling from the sky is draining towards houses
- Zero lot line homes →
 - Closely spaced together = high % of roof and hard surface
- Poorly placed downspout discharge locations

Aerial Photos

Downspouts

Private Side Alternative: Advantages

- Disconnecting the weeping tile from sanitary:
 - Removes I/I at the source
 - Saves pumping and treatment costs
 - Reduces risk of overwhelming system with 'next big storm'
 - Significantly more cost effective:
 - → only 20% of the cost of public side alternative

Existing Grant Program

- Voluntary (Current Practice):
 - 75% Grant Program for Basement Flooding Protection (includes sump pump, backwater valve, weeping tile disconnection, storm PDC)
 - Very low uptake; 'dry basement' homeowners have no interest, even though they are contributing.

Proposed Pilot Project

- Pilot Disconnection on Blanchard (up to 65 homes)
- City pays 100% cost + provides additional \$1,000 for future maintenance;
 - Includes disconnection of weeping tile, installation of sump pump, backwater valve, and private storm sewer lateral (PDC)

Proposed Pilot Project

- Voluntary signup; 50% of homeowners participation required
 - Computer modeling determined that we needed 50% buy in to ensure that enough stormwater was removed from the sanitary system (to prevent basement flooding)
- Individual site visits to each home to determine retrofit feasibility

Getting Buy In

- Homeowner Buy In
 - Public meeting to inform and educate homeowners; introduce them to our proposed solution
 - Initially had 27 homes signed up for full disconnection
 - Ended up with 32 home disconnections + 5 storm PDC installs

Tendering Project

1. External works tender

installation of storm PDCs from sewer main to house;
 included restoration, road resurfacing

2. Internal works tender

- Very unique tender from City prospective
- Included all items necessary for disconnection of weeping tile from sanitary, installation of sump pump, installation of backwater valve
- Tender items for electrical, laminate flooring removal and replacement, drywall, etc.

Project Cost

External Works

Tender bid \$305,000 (\$8,245 per house)

Internal Works:

•Tender bid: \$172,000 (\$5,375 per house)

Total = \$477,000

Note:

- external works include asphalt resurfacing
- only one Internal bid received; interested capable plumbing contractors were not familiar with City contract bonding requirements

Project Logistics

 Major difference from all other City led projects: we were proposing to undertake work on private property AND <u>inside</u> private homes!

Legal concerns:

- contractor required to have police records checks for all workers
- Additional liability insurance
- Comprehensive Dishonesty, Disappearance and Destruction Coverage (\$20,000 per employee)

Project Coordination

City's Building Division:

- Required to obtain building permits for each house (contractor's responsibility)
- Contractor needs to acknowledge that inspections can impact their schedule

Project Coordination

Homeowners:

- Consent to enter agreements from each homeowner
- Site visits before, during, and after project
- •Contractor needed a flexible schedule to accommodate homeowner work schedule, appointments, etc.

External Works

- Protect lawns
- Many PDCs installed using directional drilling method
- Minimized impact to lawns, gardens, etc

External Works – Tight work spaces

Working in between fences

External works – landscaping considerations

- Storm PDC with cleanout
- Working beside nice rose bushes, other landscaping features important to homeowner

External Works

 Adjacent to gas meters, plants/shrubs

Internal Works

Tight work spaces

Retrofit - Sump Pumps

Retrofit – Sump Pump and Backwater Valve

Retrofit – sump pump and backwater valve

Retrofit - Hardwood floors

Backwater valves

Homeowner Challenges

- Anticipated Challenges
 - Scheduling
 - Duration of work in house
 - Clean up
 - Late sign ups people wanting to sign up only after construction began
 - Exempt fully finished basements; logistically too difficult to retrofit and restore

Optics

- Some Concerns from Homeowners;
 - Why aren't you replacing the sidewalk/curb/driveway apron/road?
 - Some had the expectation that since "The City" was coming to do work, that the entire streetscape would be replaced to brand new
 - Reality: we were using sewer \$ to fix a basement flooding issue; did not have the \$ to focus on curb/sidewalk, etc.
 - What impact will the sump pump have on my home?
 - Are you installing a backup system?

Post Construction

- To date, pilot project is a success; homeowners generally pleased with work
- Real test will be significant rain event
- Flow monitor in sanitary sewer directly downstream of project
- Ongoing monitoring will take place

Post construction – Preliminary flow monitoring

Preliminary Results

- No wet weather impacts appear for Blanchard Crescent in comparison to Ardsley Crescent, which had a large wet weather response
- Initial monitoring suggests the Blanchard disconnection program is a success

Next Steps

- Present the project findings to homeowners
- Initiate another street of disconnections given our success
- Investigate geotechnical conditions to determine if more targeted weeping tile disconnections can be done; are soil conditions and groundwater levels only in certain pockets of a given street?

Thank You

Kyle Chambers, P.Eng. City of London

Environmental and Engineering Services Department

kjchambe@london.ca

519.661.2500 x5854

