

FLOOD RISK IN CANADA – MOVING FORWARD

- NATIONAL FLOODPLAIN MANAGEMENT FRAMEWORK
- ADVANCEMENTS IN URBAN FLOODING

Institute for Catastrophic Loss Reduction

October 10, 2014

OUTLINE OF PRESENTATION

- Flood Risk Primer
- National Floodplain Management Framework
- Urban Overland Flooding

FLOOD RISK PRIMER

IN CASE OF FLOOD CLIMB TO SAFETY

Copyright: tashka / 123RF Stock Photo

RIVERINE FLOODING

- Calgary 2013, Toronto 1954, Winnipeg 2011
- Canada-wide <u>Hazard</u> Mapping
- Until now, <u>Risk</u> not typically defined
- The focus of the new federal flood management initiative

HAZARD MAPPING VERSUS RISK MAPPING

Hazard Mapping

- Limits of hazard
- Used for regulating land use in floodplain

Risk Mapping and Database

- ► Frequency, depth, duration
- Consequence

RIVERINE FLOODING - ICE

URBAN OVERLAND FLOODING

Two types:

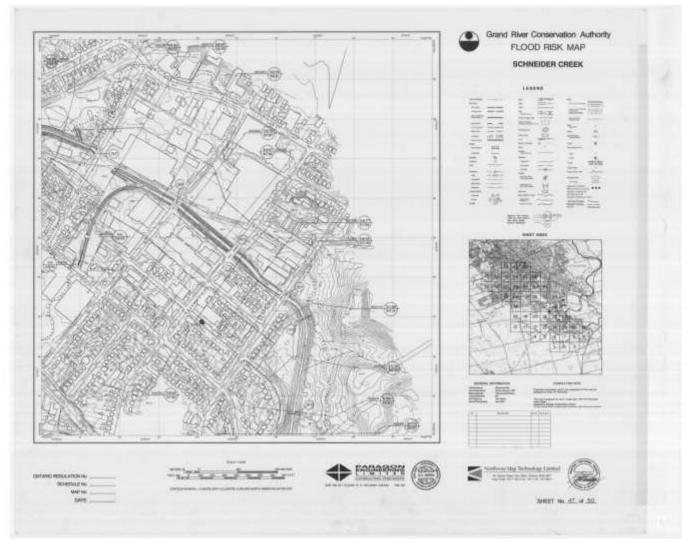
- Urban only(pluvial)
- Riverine/urban hybrid
- Typically caused by intense summer storms
- Capacity of storm sewers and road network is exceeded

BASEMENT FLOODING

- Generally caused by sewer backup
- Risk can be determined but costly to assess
- Can be remedied through conveyance improvements and disconnects

COASTAL FLOODING

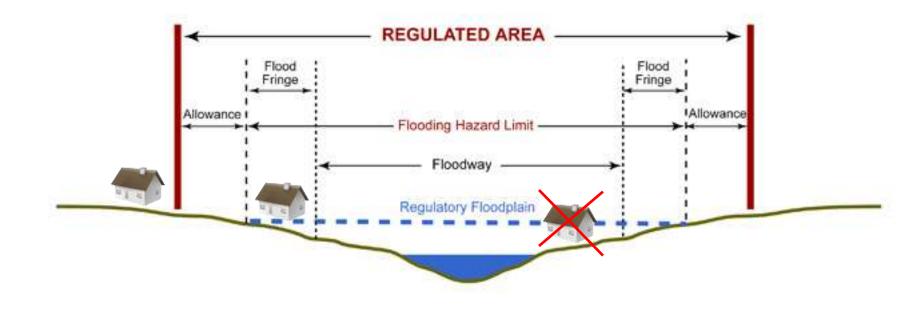
- Generally caused by high winds, but along lake shores can also be caused by high water levels
- Shoreline hazard mapping existing for many lakes across
 Canada but relatively few coastlines



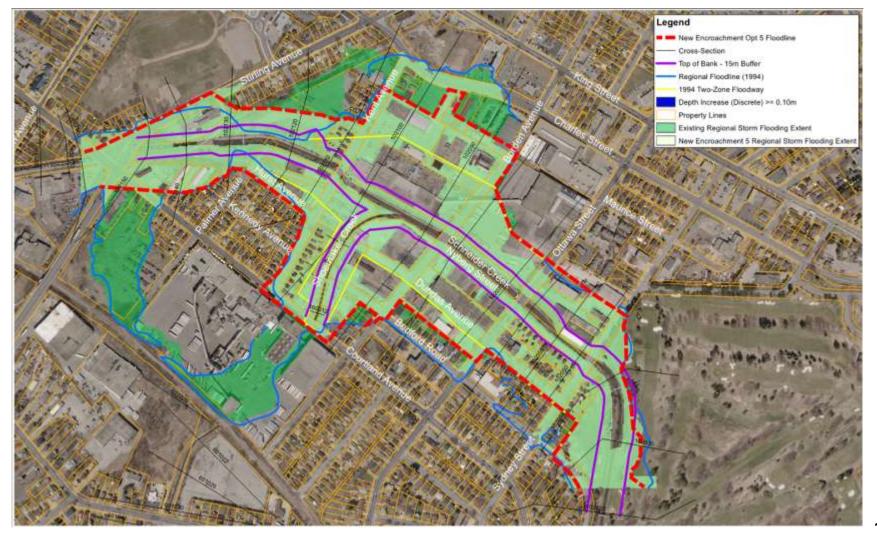
KEY STEPS IN CREATING FLOOD HAZARD MAPPING

- Base Mapping
- Hydrology the estimate of peak flows
- Hydraulics the calculation of flood elevations
- Flood Plain Mapping Mapping of lines and elevations

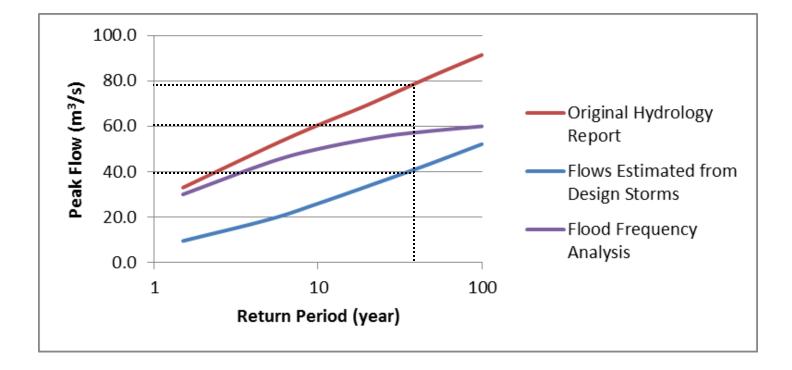
TYPICAL FLOOD HAZARD MAP



TYPICAL FLOOD HAZARD MAP



REGULATING FLOOD PLAINS ACROSS CANADA



Floodway and Flood Fringe Development

HOW ACCURATE IS CURRENT MAPPING?

How Often will it Flood?

SINGLE SITE

Return Period (years)	Annual Probability (%)	Probability in next 10-years	Probability in next 50-years	Probability in next 100-years	Probability in next 250-years
2	50%	100%	100%	100%	100%
25	4%	34%	87%	98%	100%
100	1%	10%	39%	<mark>63%</mark>	92%
500	0.2%	2%	10%	18%	39%
1000	0.1%	1%	5%	10%	22%

10 INDEPENDENT SITES

Return Period (years)	Annual Probability (%)	Probability in next 10-years	Probability in next 50-years	Probability in next 100-years	Probability in next 250-years
2	50%	100%	100%	100%	100%
25	4%	98%	100%	100%	100%
100	1%	63%	99%	100%	100%
500	0.2%	18%	63%	86%	99%
1000	0.1%	10%	39%	63%	92%

National Floodplain Management Framework

-

Will serve as a guiding document in managing and reducing flood risk across Canada through the development of state-of-the art flood risk mapping.

NATIONAL FLOODPLAIN MANAGEMENT FRAMEWORK

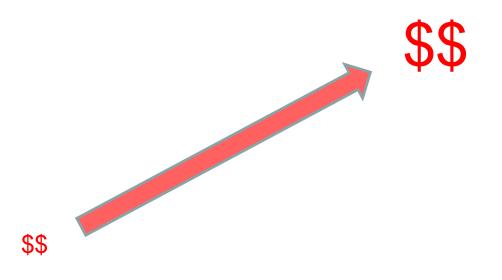
- Project Scope
- Project Rationale
- Key study tasks
- Findings and Recommendations
- Next Steps

 Review of International and Provincial Best Practices

- Review of International and Provincial Best Practices
- Assess state of Mapping across Canada

- Review of International and Provincial Best Practices
- Assess state of Mapping across Canada
- Recommend Standards Framework

- Review of International and Provincial Best Practices
- Assess state of Mapping across Canada
- Recommend Standards Framework
- Identify implementation requirements including cost


National Floodplain Management Framework

PROJECT RATIONALE

yright: winnond / 123RF Stock Photo

 Notable increase in flooding in the past decade with annual damages exceeding \$1 billion

- Notable increase in flooding in the past decade with annual damages exceeding \$1 billion
- ► No national initiative since completion of FDRP in 1995

- Notable increase in flooding in the past decade with annual damages exceeding \$1 billion
- ▶ No national initiative since completion of FDRP in 1995
- Public Safety Canada is the lead federal agency responsible for national disaster mitigation

- Notable increase in flooding in the past decade with annual damages exceeding \$1 billion
- ► No national initiative since completion of FDRP in 1995
- Public Safety Canada is the lead federal agency responsible for national disaster mitigation
- There is no residential overland flood insurance program in Canada

National Floodplain Management Framework

FUNDAMENTAL CHANGE

yright: winnond / 123RF Stock Photo

RECOMMENDING FUNDAMENTAL CHANGES

- Continue to develop Flood Hazard Maps
- Will be supplemented by a Flood Risk Data Base and Flood Risk Mapping
- Nationally coordinated data base that is accessible

RECOMMENDING FUNDAMENTAL CHANGES

- Continue to develop Flood Hazard Maps
- Will be supplemented by a Flood Risk Data Base and Flood Risk Mapping
- ► Nationally coordinated data base that is accessible

Will lead to:

- Reduction in flood damage
- Availability of flood insurance

GUIDING PRINCIPLES

yright: winnond / 123RF Stock Photo

Technical Accuracy

- ► Effective in assessing and Managing Risk
- Accessible to the User
- Information is Current

One foot = 0.3048 metres

And Hurricane **Technical Accuracy** Hazel? 100.0 80.0 Peak Flow (m³/s) Original Hydrology 60.0 Report Flows Estimated from 40.0 Design Storms 20.0 Flood Frequency Analysis 0.0 10 100 1 Return Period (year)

- ► Technical Accuracy
- Effective in Assessing and Managing Risk
- Accessible to the User
- Information is Current

- Technical Accuracy
- Effective in assessing and Managing Risk
- Accessible to the User
- Information is Current

- Technical Accuracy
- Effective in assessing and Managing Risk
- Accessible to the User
- Information is Current

INTERNATIONAL

yright: winnond / <u>123RF Stock Photo</u>

INTERNATIONAL BEST PRACTICES

What can we learn from practices in other countries, most specifically:

- ► EU: France, Switzerland, Germany
- United Kingdom
- United States
- Australia
- New Zealand

INTERNATIONAL BEST PRACTICES What we learned

- 20 years ago we were among the leaders but we have been surpassed in some respects
 - National leadership
 - More emphasis on integrating hazard mapping and flood risk data
 - ► Accessibility
- Hurricane Hazel as a Regulatory event is the mist stringent noted

- 11

VARIATIONS ACROSS CANADA

yright: winnond / 123RF Stock Photo

Differences:

► Regulatory events

Copyright: alexmit / 123RF Stock Photo

Differences:

- Regulatory events
- ► Governance models

Copyright: iqoncept / 123RF Stock Photo

Differences:

- Regulatory events
- ► Governance models
- Approach to building i flood plains including SPAs

Copyright: alexmit / 123RF Stock Photo

Differences:

- Regulatory events
- ► Governance models
- Approach to building in floodplains including SPAs
- ► Challenges

EXPERT OPINION

yright: winnond / <u>123RF Stock Photo</u>

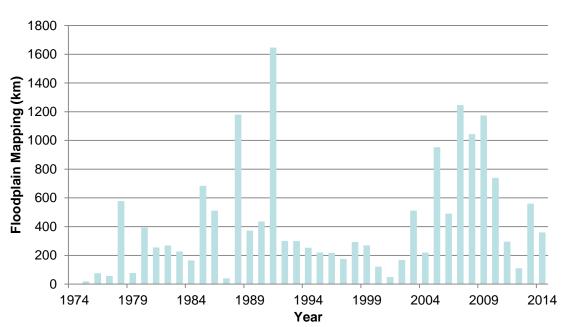
Move beyond hazard mapping to consider risk

- ► The 1:100-year event is not sufficient
- ► Expand and Update mapping
- Address governance and capacity limitations
- Accessibility

- ► Move beyond hazard mapping to consider risk
- ► The 1:100-year event is not sufficient
- Expand and Update mapping
- Address governance and capacity limitations
- ► Accessibility

- Move beyond hazard mapping to consider risk
- ► The 1:100-year event is not sufficient
- Expand and Update mapping
- Address governance and capacity limitations
- ► Accessibility

- Move beyond hazard mapping to consider risk
- ► The 1:100-year event is not sufficient
- Expand and Update mapping
- Address governance and capacity limitations
- ► Accessibility


- Move beyond hazard mapping to consider risk
- ► The 1:100-year event is not sufficient
- Expand and Update mapping
- Address governance and capacity limitations
- Accessibility

STATUS OF MAPPING

yright: winnond / 123RF Stock Photo

STATUS OF MAPPING ACROSS CANADA

Date of Floodplain Mapping

STATUS OF MAPPING ACROSS CANADA

TABLE 1: AGE OF EXISTING MAPPING				
Period	Total (%)	Percentile	Year Completed	
1970-1979	7	25	1987	
1980-1989	24	50	1996	
1990-1999	22	75	2006	
2000-2009	39			
2010-2013	8			
TOTAL (km)	28,100			

STATUS OF MAPPING ACROSS CANADA

TABLE 2: MAPPING SUMMARY					
	Total Length	Urban	Rural	Urban	Median
	(km)	(km)	(km)	(%)	age
British Columbia	2,656	369	2,286	14	1989
Alberta	960	472	488	49	2007
Saskatchewan	253	98	155	39	1989
Manitoba	363	126	237	35	1993
Ontario	16,675	4,500	12,175	27	2002
Quebec	5,800	4,345	1,450	75	2003
New Brunswick	<500	132	368	26	1992
Prince Edward Island	<50	25	25	50	
Nova Scotia	<500	132	368	26	1980
Newfoundland and				26	
Labrador	228	60	168		1990
Yukon	-				
Northwest Territories	110		110 ¹		1986
Nunavut	-	-	-		
CANADA	28,100	10,300	17,800	35%	1996

Province/Territory	Existing (km)	Additional (km)	Bar Chart Showing Current and Proposed Coverage (%)					
			0	20	40	60	80	100
British Columbia	2,656	2650						
Alberta	960	770						
Saskatchewan	253	125						
Manitoba	363	185						
Ontario	16,750	500						
Quebec	5800	10000						
New Brunswick	<500	250						
Prince Edward Island	<50	25						
Nova Scotia <500		250						
Nfld. & Labrador	228	115						
Yukon	-	260 ¹						
Northwest Territories	110 ²	30						
Nunavut	-	130 ³						
TOTAL	28,100	15,300						
Existing		1						
Proposed								

THE FRAMEWORK

yright: winnond / <u>123RF Stock Photo</u>

FRAMEWORK SCOPE

	Framework Scope:
Guidelines	Identifies purpose and general content
Performance Standards	Identifies key standards that help define risk
Technical Standards	Recommends proposed standards that contribute to accuracy
Initiatives	Identifies purpose and general content

GUIDELINE DOCUMENTS

- ► Base Mapping and Field Survey
- Hydrology
- Hydraulic Analysis
- Coastal and Shoreline Flooding
- Policy Framework
- Flood Risk Assessment and Mapping
- Geo-referenced Database and National Portal

SAMPLE STANDARDS

► Base Mapping

- ► Vertical accuracy of 0.15 m
- Hydrology
 - ► Estimate flow rated for 1:2 to 1:1,000 years
- Policy Framework
 - ► Minimum Regulatory event should be 1:350 year event
 - Minimum Floodway return period should be 1:50 year event

- 11

NEXT STEPS

yright: winnond / 12<u>3RF Stock Photo</u>

► Money

- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

- ► Money
- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

- ► Money
- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

- ► Money
- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

NEXT STEPS

- ► Money
- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

NEXT STEPS

- ► Money
- Complete a National Risk Assessment to help establish mapping priorities
- Develop Guidelines and refine the Technical Standards
- Develop Framework for the Flood Risk Database
- Determine the delivery model for preparing mapping and the data base
- Prepare Federal-Provincial/Territorial Agreements

URBAN OVERLAND FLOODING

copyright: alexmit / 123RF Stock Photo

URBAN OVERLAND FLOODING

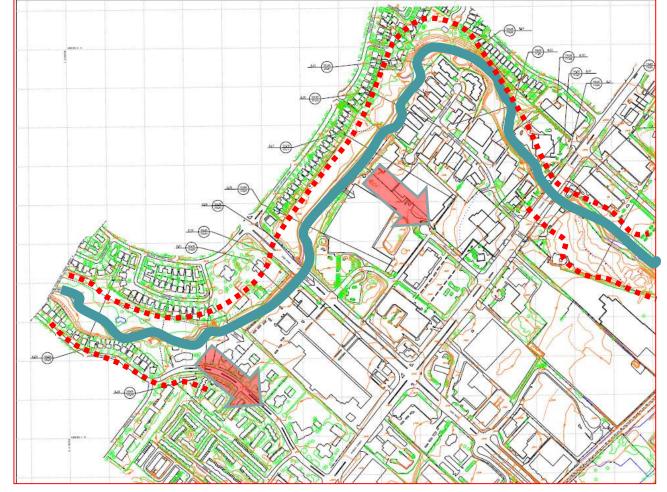
- Review Types
- Example of hybrid flooding
- Advances in assessing urban overland flooding

URBAN OVERLAND FLOODING

- ► Two types:
 - Pure urban
 - Riverine/urban hybrid
- Typically caused by intense summer storms and poorly defined overland flow routes (pre 1975 in Ontario)

URBAN OVERLAND FLOODING

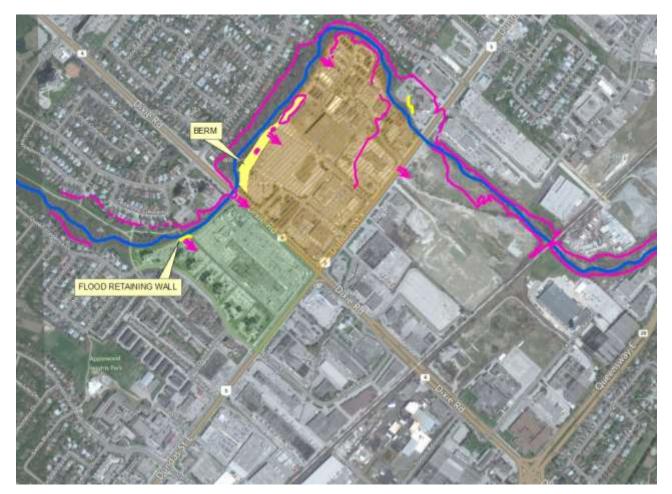
- Minor/Major design concept significantly reduces risk
- Flood prone areas rarely defined



HYBRID RIVERINE/URBAN OVERLAND FLOODING

Reasons flood prone areas rarely defined

- Technology to assess (1D versus 2D models)
- Relative priority
- Governance
- Frequency



HYBRID RIVERINE/URBAN OVERLAND FLOODING

Reasons flood prone areas rarely defined

- Technology to assess
 (1D versus 2D models)
- Relative priority
- ► Governance
- Frequency



HYBRID RIVERINE/URBAN OVERLAND FLOODING

Reasons flood prone areas rarely defined

- Technology to assess (1D versus 2D models)
- Relative priority
- ► Governance
- Frequency

ASSESSING URBAN OVERLAND FLOODING

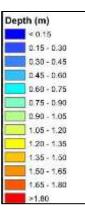
- Topographic Map Review
- Complex Modelling
- Screening Method

OVERLAND FLOODING – Topographic Map Review

- Primary areas of concern can be identified
- Difficult to define risk or extent of flooding

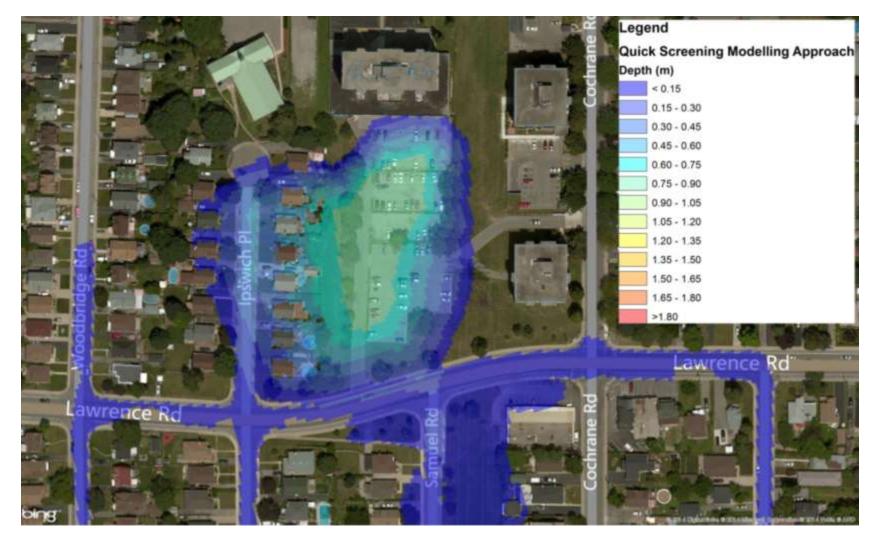
OVERLAND FLOODING – Complex modelling

- Simultaneous modelling of runoff, sewer flow and overland flow
- Data and Labour Intensive
- Provides understanding of risk and can be used for assessing mitigation measures


OVERLAND FLOODING – Screening Methods

- Use to screen areas that may be flood prone
- Effectiveness a function of base mapping accuracy
- Provides understanding of risk and can be used for assessing mitigation measures
- Option of applying Complex Modelling for key areas of concern

Example: Flood Depths based on Complex Modelling


Example: Flood Depths based on Screening Method

Example: Flood Depths based on Screening Method

Tim Mereu mereut@mmm.ca

Questions?

