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BRIEF SUMMARY AND ACHIEVEMENTS

The objective of the research is to investigate the effect of the interaction between basements and

the surrounding soil medium on the estimated earthquake forces and deformations, for a variety

of building types.  To achieve this objective, the methodology involves the computer modeling

of different buildings supported by different foundation systems.  The computer model involves

three-dimensional dynamic analysis of the combined superstructure and its foundation.

The first part of the study involved the analysis of the seismic response of tall slender

R/C towers supported on flexible foundations.  A new hybrid analysis was developed to model

the nonlinear behaviour of the soil underneath the structure.  A three dimensional finite element

model was developed to represent the superstructure.  The effect of the foundation flexibility on

the seismic response of the tower was evaluated in terms of total displacements at the tip of the

tower and the base forces (base bending moment and base shear).  It was found that the

foundation flexibility has a significant effect on the tower response to earthquake loading.  The

results showed that the soil-structure interaction could have a detrimental effect on tall structures

contrary to what is postulated in design codes.

The foundation rocking behaviour could greatly contribute to the response of the

supported structure to seismic loading, and in some cases it may become the governing factor

when choosing a retrofitting scheme.  In the second part of the study, analytical equations for the

moment-rotation response of a rigid foundation are presented.  An equation is derived for the

uplift-yield condition and is combined with equations for uplift-only and yield-only conditions to

enable the definition of the entire static moment-rotation response.  The results obtained from the

developed model show that the inverse of the factor of safety, χ, has a significant effect on the

moment-rotation curve.  The value of χ = 0.5 not only determines whether uplift or yield occurs

first but also defines the condition of the maximum moment-rotation response of the footing.

The computed moment-rotation response agreed well with experimental results found in the

literature, as well as the recommended NEHRP guidelines based on the FEMA 273/274 for the

foundation moment-rotation. Three-dimensional finite element models are being developed for

the seismic response analyses of multistory buildings.  The soil model will be incorporated in the

structural model and the global model will be used in the analysis.

Keywords: Seismic, soil-structure interaction, basement walls, rocking
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RESEARCH METHODOLOGY

The seismic response of buildings with basement walls is a complicated phenomenon and is

affected by several factors. The research reported here investigated two of the factors that

influence the seismic response of buildings with basement walls in two parallel and independent

studies.  The first study was focused on the effects of soil-structure interaction (SSI) on the

seismic response of tall structures. The second study was focused on the rocking response of

rigid foundation.  The following sections describe the methodology and findings of both studies.

PART I: SEISMIC RESPONSE OF TALL SLENDER STRUCTURES

I.1. Introduction

Numerical methods used for dynamic SSI can be classified into direct and substructure methods.

The computational effort required for the direct analysis is high, rendering the procedure

computationally inefficient for regular design applications.  The substructure approach is

computationally more efficient. This method divides the system into two subsystems, a

superstructure that may include a portion of non-linear soil around the foundation (near-field)

and a substructure that includes the unbounded soil around the superstructure (far-field). The

subsystems are connected by a general soil-structure interface (Fig. I.1).

The consistent infinitesimal finite-element cell (CIFECM) method (Wolf & Song 1996)

is a new approach that combines the advantages of the boundary element method and finite

element method. A new three-dimensional dynamic SSI model based on the substructure method

is developed to analyze the seismic response of tall structures accounting for soil non-linearity.

In this methodology, the supporting soil is decomposed to some concave bounded media, where

most of the non-linearity occur (near-field), and the unbounded medium representing the far-

field soil zone. The CIFECM is used to evaluate the unbounded soil’s reaction on the soil-

structure interface and to model the bounded media, while the structure is represented by the

FEM. The proposed procedure is used to examine the effect of soil non-linearity on the dynamic

soil-structure analysis of a TV-tower subjected to strong ground motions.

I.2. Concepts Of Proposed Approach

        The main concept of the proposed approach stems from the cloning algorithm due to Wolf

(1985). The cloning concept is employed to model the non-linear soil zone underneath the
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foundation (near-field) as a series of bounded media and the linear soil zone far from the

foundation (far-field) as an unbounded medium. Each non-linear bounded zone may be

represented by a non-linear frame element. The non-linear properties of each non-linear frame

element including its non-linear force-deformation relationships are obtained using the non-

linear deformation load concept. The stiffness matrix of each non-linear frame element is

obtained using the direct stiffness method in structural matrix analysis by applying a unit

deformation corresponding to each vibration mode (called motion pattern). Different motion

patterns corresponding to the degrees of freedom of the frame element are considered including:

vertical, horizontal and rocking motion patterns at two ends of the non-linear bounded medium.

The CIFECM is then used to calculate the static stiffness and mass matrices of the bounded

medium corresponding to the proposed motion patterns.

        The flexural elements representing the non-linear zone of soil may be idealized using an

uniaxial element with six internal non-linear springs and dashpots corresponding to the axial and

torsional deformations, two bending rotations and two shear displacements. The equivalent static

force-deformation relationships for the non-linear springs are calculated assuming no residual

displacements and adjusting the shear modulus, G and material damping ratios according to the

strain level in the layers to account for soil non-linearity.   The frequency-dependent nature of

the foundation compliance is accounted for by evaluating the foundation compliance at the

fundamental frequency of the SS system (Darbre 1990). The effect of the frequency dependence

of foundation compliance on the total response of the SS system is small and can be ignored.

I.3. Equation of Motion

       When considering seismic excitation only, the equations of motion of a total structure-soil

system (Fig. I.1) can be written as
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in which tu is the total displacement vector; M, C and K are the mass, damping and stiffness

matrices obtained by the finite-element formulation for the structure and by the CIFECM for the

near-field soil as bounded media in the SS system. The subscript b denotes the degrees of

freedom in the bounded zone of SS system including the structure and the soil; the subscript i

represents those along the structure-soil interface between the bounded part and the unbounded
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soil zone; the unbounded zone is represented by superscript g; and )(tiR  is the earthquake force

applied along the general structure-soil interface that can be calculated from the free-field

responses, g
iu&& , as
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i
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where g
iu&& is the acceleration vector at the nodes i that lie on the structure-soil interface of the soil

and I is the unity vector. The governing differential equations of inertial motion for the proposed

model for MDOF structures Fig. I.2) can then be written in the form of:
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where the subscripts f and s denote the nodes on the structure and first bounded medium interface

and the remaining nodes of the structure, respectively (see Fig. I.1); and the subscripts I, II and

III denote the bounded media numbers.

I.4. Ground Acceleration Motion

       The ground motion at the structure-soil interface, called generalized scattered ground

motion, { }g
iu&& , can be calculated from the free-field motion, { }f

iu&& , which does not depend on the

bounded zone. The program SHAKE 91 may be used to perform the free-field analysis taking

into account the effect of primary non-linear behaviour of the soil.

       In Eq. I.2, the earthquake excitation is characterized by{ }g
iu&& , the motion at the nodes on the

bounded and unbounded zones interface of SS system. This motion is different than what is

usually obtained from the free-field analysis in which the excavated soil is assumed in.

Therefore, it is necessary to calculate the scattered motion from the free-field motion, { }f
iu&& ,

(Wolf 1985) which is determined by the free field site analysis.

I.5. Solving The Equations

       The internal forces carried by the SS system are decomposed into two components and the

dynamic equilibrium equations (Eq. I.3) can be rewritten as:

       [ ]{ } [ ]{ } [ ] { } { } { })(
)(
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tPtuKtuCtu?
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where [M], [C] and [K]l are the mass, proportional damping and stiffness matrices corresponding

to the total degrees of freedom with the non-linear elements removed. { })(tPn = [ ] { })(tuK n  is the

vector of forces in the non-linear elements including the viscous dampers and the non-linear

springs and is computed by iteration at each time t in which [K]n is the stiffness matrix of the

non-linear elements. Denoting the linear effective stiffness matrix for all the non-linear degrees

of freedom [K]eff, , the equilibrium equation can be rewritten as

          [ ]{ } [ ]{ } [ ]{ } { } { } [ ] { })()(
~

)()( tuKP(t)(t)PtuKtuCtu? effn +=+++ &&&                  (I.5)

where [ ]K~ =[K]l+[K]eff .
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       The nodal displacements, {u(t)}, can be approximated by a linear combination of a set of

linearly independent free-vibration eigenvectors in a classical mode-displacement superposition

method, or load-dependent transformation vectors, [F ], using the stiffness [ ]K~ , and the mass

matrix [M], as

               [ ]{ })()( tYtu F= ;   [ ]{ })()( tYtu && F= ;   [ ]{ })()( tYtu &&&& F=                       (I.6)

where {Y(t)} is the generalized coordinates obtained by solving the SDOF transformed systems

of dynamic equilibrium equations. The eigenvectors, [F ], can be computed from the undamped

free-vibration eigen problem:

                                [ ] [ ] [ ] [ ] [ ]FF MK ll
2ω=                                                   (I.7)

or alternatively, load-dependent transformation vectors (Ritz vectors) generated by an inverse

iterative scheme from the fixed spatial distribution of the seismic load can be used for [F ]. The

Ritz vectors have to satisfy the following equations:

            [ ] [ ] [ ] IFF =MT    ;   [ ] [ ] [ ] 2~ OFF =KT    ; [ ] [ ] [ ] ?FF =CT                    (I.8)

where I is the identity matrix and 2O is a diagonal matrix of squared structural frequencies and

in the case of standard proportional damping ?  is a function of the damping ratio.

       The non-linear modal forces of the non-linear elements are a function of corresponding

nodal displacements that should be calculated in terms of local displacements.  At any time, the

deformation, { )(tδ }, in the local coordinate system of the non-linear elements can be expressed

in terms of the nodal point displacements, {u(t)}, by a displacement transformation equation, i.e.

                                                 { } [ ] { })()( tuAt =δ                                                       (I.9)

The deformations in the non-linear elements can be expressed in terms of modal coordinates as

                                            { } [ ] [ ] { })()( tYAt F=δ                                                     (I.10)

       Given the deformation time histories of the non-linear elements and their basic non-linear

properties, the non-linear modal forces are then calculated from

                              { } [ ] [ ]( ) { } [ ] { }( ))()()( tuKtPAtF effn
T

n −= F                                (I.11)

       Therefore, the non-linear modal equations (7) have to be solved iteratively in each time step.

Assuming that the linear and non-linear modal forces vary linearly during each time step, a

mixed procedure as a combination of vector superposition method and incremental method,
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which has been found to be efficient for systems with a small number of non-linear members

(Wilson 1993) is used to solve the modal equations.

I. 6. Numerical Example

       The procedure proposed in this study is used to investigate the dynamic non-linear soil-

structure interaction of an actual TV-tower.  The geometrical and geological data of the tower

were made available to be used as an example for R/C tall slender structures. The TV-tower (Fig.

I.3) is 435 m in height with a twelve-storey heavy observation building and a 120 m tube

antenna. It has a flexible shallow foundation that consists of a mat footing and a transition

structure between the shaft and the mat footing.

       The structure is modeled by general shell and frame elements. Linear elastic material

properties of E = 40,000 MN/m2 and ν?= 0.2 are used for the concrete. The steel antenna has

material properties of E = 2.1x105 MN/m2 and ν?= 0.3. The material damping ratios of five and

three percent are used for the concrete and steel, respectively.

       The seismic response of tall slender structures is largely influenced by the flexibility of the

supporting soil medium (Halabian & El Naggar 2001). Therefore, in this study numerical models

are set up for several possible combinations of the structural and soil models. Two different soil

profiles (shown in Table I.1) are used to represent the practical soil stiffnesses. Both profiles

have shear wave velocity that increases slightly with depth. For each soil profile, two different

soil models are used to represent the effect of soil non-linearity in the near-field. For the purpose

of analysis, the soil is assumed to be layered halfspace. Poisson’s ratio equal to 0.3 is selected

and the mass density of the two types of soil are assumed as 1850 kg/m3 and 1750 kg/m3 for silty

sand and firm clay. For each of site profile and soil model possible combinations, an ensemble of

two strong ground motion records, the N-S component of the 1940 El Centro Earthquake and

N21E component of the 1952 Taft Earthquake are selected as the control free-field motions. The

selected records are scaled to peak ground acceleration of 0.35g.

       Using given earthquake excitations, the soil profiles described in Table I.1 and the

corresponding low strain shear moduli and damping ratios as initial values, the free-field motions

at the level of soil-structure interface (Fig. I.2) are obtained employing the described method and

program SHAKE 91. The final effective strains (65 percent of the maximum octahedral shear
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strains) and the associated shear moduli and damping ratios for both soil profiles (A and B) using

the silty sand model due to the 1940 El Centro Earthquake are shown in Table I.2.

       The properties of the bounded soil media (near-field) and unbounded soil medium (far-field)

are chosen to be compatible with the final shear strain results obtained from the corresponding

free-field site response analyses. The near-field soil is subdivided into two regions: region I in

which the non-linear effects of soil are considered to be significant; and region II where non-

linearity is expected to be small. The artificial interface separating the regions experiencing

significant and small non-linear SSI is selected so that the dimension of region I is about one and

half of the characteristic length of the embedment depth of the foundation. The impedance

functions of the far-field soil (unbounded medium) were calculated at a frequency equal to the

weighted average of the first three fundamental frequencies of the structure obtained from the

analysis of the fixed–base case.

       The seismic responses of the SS system for a combination of site A and the silty sandy soil

model subjected to the 1948 El Centro Earthquake is calculated for these cases: fixed base,

flexible base assuming linear soil behaviour and flexible base assuming non-linear soil

behaviour. Figure I.4 shows the calculated time histories of bending moment at the base of the

tower for the three cases. As it can be noted in this case, the effect of soil non-linearity is to

decrease the base bending moment compared with the linear SSI case.

       Comparing the results for the fixed-base and the linear near-field soil cases showed that the

effect of the foundation was to decrease the base bending moment. This effect is more

pronounced for softer soil. It is interesting to note that as the supporting soil gets stiffer the effect

of soil non-linearity decreases. However, this effect depends on the excitation parameters.

       The displacements at the top of the observation deck were also calculated.  The following

observations were made. First, the foundation flexibility has a significant effect on the tower

response. Second, the soil non-linearity could increase or decrease the displacement response

depending on the characteristics of the ground motion and the structure. Therefore, soil non-

linearity should be considered for important structures as it may increase the displacements

significantly. Third, unlike the base bending moment case, the effect of soil non-linearity on the

displacement is more pronounced for stiffer soils.
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PART II: ANALYTICAL MOMENT-ROTATION CURVES FOR RIGID

FOUNDATIONS

II.1 Introduction

Foundation rocking contributes significantly to the seismic response of a foundation for both tall

slender structures and medium-rise buildings (Meek, 1978).  The rocking mode involves uplift of

the foundation at one side and soil yielding at the other side of the foundation, and generally

results in the permanent settlement of the footing.  Many researchers have investigated the

nonlinear foundation rocking action using rigorous finite element and boundary element models.

However, finite element and boundary element solutions are not efficient for nonlinear time

domain analysis since they require large computational time and effort, and thus are not practical

for regular design purposes.

The static moment-rotation response forms an important part of the cyclic response of a

footing, and thus, has to be accurately modeled when analyzing the seismic response of the

supported structure.  Siddharthan et al. (1992) presented a set of equations to evaluate the

moment-rotation response for both uplift-only and yield-only conditions of a rigid foundation.

The equations were derived in the context of a retaining wall foundation, and as such, they do

not constitute all the necessary equations for the complete static response of a rigid foundation.

II.2 Derivation of State Equations

The following assumptions are made in the derivation of the state equations: the axial load is

constant and acts at the center of the footing; the moment acts about the longitudinal axis of the

footing and is computed about its center; and the length of the footing is one unit.  Figure II.1

shows a schematic of the assumed stress and displacement conditions for various footing states.

State 1 represents elastic conditions, state 2 represents the initial foundation uplift condition

(uplift-only), state 3 represents the initial soil yield condition (yield-only) and state 4 represents

the soil yield and foundation uplift condition.  These states correspond to different segments of
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the moment-rotation curve shown in Figure II.2 and are considered herein to derive the

foundation moment-rotation response curve as follows.

II.3 Soil Yield and Foundation Uplift Condition

All previous work reported in the literature addresses either elastic condition, uplift-only and

yield-only stress states.  In this study, the state of stress of combined soil yield and foundation

uplift is considered.  An expression is derived to describe this state represented by segment 5 of

the moment-rotation curve shown in Fig. II.2.  Considering the kinematics of this stress state

yields (refer to Fig. II.1d):

vuuxx 221210 δδδδδδ =+=+= (II.1)

Substituting into Eq. II.1 (from Fig. 3d), the following equations are obtained

( )( )xBkq vx −−= ηθ 1 (II.2a)

( )xBkqq vux −+= ξθ (II.2b)

Equating Eqs. II.2a and II.2b gives
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Substituting Eq. II.3 into Eqs. II.4a and b and rearranging, the equation for the moment- rotation

curve for this condition can be derived as:
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Equation II.6 gives the maximum moment capacity of the foundation, which can also be derived

by considering the foundation equilibrium (statics) when a fully plastic stress block is assumed.

Equation II.5 shows that the moment, M, is inversely proportional to the square of the rotation.

II.4 Properties of Moment-Rotation Curves

The equations derived above define the static moment-rotation response curve completely for

any stress state.  These equations are used to evaluate the response of different foundations under

different loading conditions. To enable a comparison between different footings under different

response conditions, non-dimensional variables (ψ, χ, MqB) are introduced as follows:

u
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=ψ (II.7a)
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=χ (II.7b)

2Bq
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M
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qB = (II.7c)

where ψ is a soil property and represents the ratio of the soil stiffness to its strength; χ is the

inverse of the foundation bearing capacity safety factor under vertical load, FS; and MqB is a

normalized (non-dimensional) moment.  Using these non-dimensional variables, the complete

moment-rotation relation can be expressed as:
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and for χ ≥ ½
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Equations II.8a and II.8b show that the normalized moment, MqB, is a function of only ψ and χ.   

Figures II.3 and II.4 show the moment rotation response curves for a range of values of ψ and χ.

Figure II.3 shows the moment-rotation curves for χ = 0.2, and a range of practical values

of ψ (50-1200).  Small values of ψ (Figure II.3a) represent foundations supported on strong soils

such as stiff clays and dense sand, where the soil strength is high compared to its stiffness. Such

foundations will usually have a small width. On the other hand, large values of ψ (Figure II.3b)

represent foundations of large width supported on a relatively low bearing capacity soil such as

soft clay or loose sand.  It is noted from Fig. II.3 that the rotational stiffness of the foundation

(manifested by the slope of the moment-rotation curve) increases with an increase in ψ. The

figure also reveals that the ultimate rotation decreases as ψ increases, almost linearly, i.e., the

ultimate rotation decreased by an order of magnitude as ψ increased by an order of magnitude.  It

is worth mentioning here that Eurocode 7 (CEN, 1994) specifies 6 millirad (mrad) as the relative

rotation to cause an ultimate limit state.  From Fig. II.3, it can be observed that rotation of 6 mrad

represents an elastic response for the case of ψ = 50 and represents a nonlinear response state for

the case of ψ = 1200.

Figure I.4 shows the effect of χ on the moment-rotation response of foundations with ψ =

200.  The figure shows that the moment response increases as χ increases until it reaches 0.5, and

then declines as χ continues to increase.  The insert in Fig. II.4 shows that the maximum value of

MqB, which does not depend upon ψ, varies with χ in a parabolic manner, and attains a maximum

value of 0.125 at χ = 0.5.  This shows that χ = 0.5 represents a limiting condition on the moment-

rotation response of a spread rigid footing based on the Winkler soil model.
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II.5 Discussion

The FEMA 273/274 documents and Siddharthan et al. (1992) state that the significance of χ is

that its value, above or below 0.5, indicates whether uplift of the foundation or yielding of the

soil would occur first.  However, the main significance of χ = 0.5 is that it defines the maximum

moment-rotation response possible as shown in Fig.II.4.  This is further illustrated in Fig. II.5,

which shows initiation of different stress states for different χ values.  For χ = 0.5, the uplift-

yield portion segment follows immediately after the elastic segment (point R).  This shows that

for this case (χ = 0.5), a yield-only or uplift-only condition does not occur.  On the other hand,

uplift-only and yield-only conditions occur after the elastic condition at θ = 1 mrad (point P) for

χ = 0.1 (e.g. foundations where conditions other than bearing capacity demands govern the

design) and χ = 0.9 (e.g. foundations of existing structures that need retrofitting because of

increased loads as a result of code revisions or change in the use of structure), respectively.

However, the yield-uplift condition occurs, but at a large rotation of θ = 25 mrad (not shown on

the graph).  For χ = 0.3 (typical foundation design) and χ = 0.7 (foundation designed to mobilize

its ultimate capacity under seismic conditions), uplift (for χ = 0.3) and yield (χ = 0.7) initiate at θ

= 3 mrad (point Q).  The onset of the yield-uplift condition occurs at θ = 8 mrad (point S).  It can

thus be concluded that as χ approaches 0.5 from either side, the region where uplift-only or

yield-only occurs shrinks and the region where yield and uplift occur expands.  Based on this

observation, three regions of moment-rotation responses can be postulated: uplift-dominant

region; uplift-yield region; and yield-dominant region.

Based on the ensuing discussion, the following important observations can be made:

1. The moment-rotation curve included in the FEMA 273/274 documents (Fig. II.2) presents a

seemingly different picture to some of the inferences drawn in this section.  First, the curves

for the initial uplift or initial yield conditions are shown as two separate curves (1-3-5-6 and

1-4-5-6, respectively), with the initial uplift curve lying above that for the initial yield. .  This

implies that for the same ψ value, a foundation design with χ < 0.5 (which leads to initial

uplift) would result in a larger moment response than the case where χ > 0.5 (which leads to

initial yield).  However, both curves are similar and the moment-rotation response is rather

influenced by the absolute difference between χ and χ = 0.5.  Secondly, Fig. II.2 shows that
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segment (5) of the curve, which represents the uplift-yield condition is asymptotic to the

ultimate elastic condition, M = PB/2.  This is incorrect, since no yielding occurs by definition

(infinitely strong soil).

2. Siddharthan et al. (1992) stated that the rocking response could be grouped into either the

initial uplift condition, or the initial yield condition.  It has been shown that the ultimate

moment for both conditions is the same if formulated in terms of χ.  The results presented

herein show that based on the value of χ,  the moment-rotation response can rather be

grouped into three categories based on dominating behaviour and not two categories based

on the initiation of uplift of yield.  The correct expression for the ultimate moment has also

been derived.

II.6 Comparison with Experimental Results

The ability of the model developed in this study to evaluate the moment-rotation behaviour of a

foundation is verified using available experimental results.  The model developed is used to

analyze the moment-rotation response of foundations subjected to rocking action in a laboratory

testing program and the results are compared with the measured values.

The European Commission (EC) sponsored the project TRISEE (3D Site Effects of Soil-

Foundation Interaction in Earthquake and Vibration Risk Evaluation), which included large-scale

model testing to examine the response of rigid footings to dynamic loads.  The results of these

tests are of high quality and are readily available (Negro et al. 1998).  Therefore, these tests are

analyzed using the developed model and the results are compared with the measured values.

II.6.1 TRISEE experiment

The experiments involved a 1 m square footing model embedded to a depth of 1 m, in a 4.6 m by

4.6 m by 3 m deep sample of saturated Ticino sand.  Ticino sand is a uniform coarse-to-medium

silica sand.  The properties of the sand are as follows: D50 = 0.55 mm; coefficient of uniformity,

Cu = 1.6; specific gravity, Gs = 2.684; emin = 0.579; and emax = 0.931 (Jamiolkowski et al., 1999).

Two series of tests were performed on the model foundation installed in two different soil

samples with relative density of 45% (low density, LD) and 85% (high density, HD).

A vertical load of 100 kN and 300 kN was applied to the LD and HD samples, respectively,

before the application of the horizontal cyclic loading phase.  The imposed pressures of 100 kPa
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and 300 kPa represent typical design pressures for foundations in medium to dense sands, where

the design is usually governed by admissible settlement, not bearing capacity, requirements.  The

resulting static FS under vertical load only was found to be about 5 in both cases.  The cyclic

loading involved three phases: Phase I - the application of small-amplitude force-controlled

cycles; Phase II - the application of a typical earthquake-like time history; and Phase III -

sinusoidal displacement cycles of increasing amplitude.  Only relevant sections of the results of

the tests would be presented for comparison purposes. Further information on the experiments

can be found in Negro et al. (1998, 2000), Pedretti (1998) and Jamiolkowski et al. (1999).

II.6.2 Comparison with TRISEE experiments

The load-deformation results obtained during the application of the static vertical load only

(similar to a plate loading test) were used to back figure the soil subgrade.   Figure II.6 shows the

load-deformation results of the TRISEE experiments plotted in terms of εa, along with the

stiffness values for initial, secant and unload-reload loading conditions as evaluated from the test

results.  These values of the subgrade modulus are used in the developed Winkler model to

calculate the moment-rocking response of the foundation and the results are compared with the

measured response in Fig. II.7. It should be noted that the measured response represents the

envelop of the loading cycles with gradually increasing peak amplitude (i.e. obtained by

connecting the tips of the hysteretic loops).  Lo Priesti et al. (1998) have noted that because of

the different impact of plastic strains under different loading conditions, it is impossible to obtain

the same backbone curve for both monotonic and cyclic loading.  Figure II.7 shows that the

results computed based on the unload-reload stiffness gives the best agreement with the

experimental results.  The initial stiffness is slightly underestimated, but the overall response is

generally satisfactory. This is expected since cyclic loading represents an unload-reload action,

and the unload-reload stiffness is more representative of the small-strain stiffness.

Soil nonlinearity and creep effects significantly influence the initial stiffness.  For

example, the experimental results for the LD specimen showed that the creep settlement

accounted for about 40% of the observed settlement (Jamiolkowski et al., 1999).  The response

calculated based on the secant subgrade modulus is seriously overestimated (i.e. rocking stiffness

is grossly underestimated) as shown in Fig. II.7.  Although this is expected, the need for carefully
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selecting the subgrade modulus values for either static or dynamic analysis of foundations is not

fully appreciated in practice.

UTILITY OF RESEARCH RESULTS FOR THE INSURANCE INDUSTRY

The results of the research showed the significant effect of SSI on the seismic performance of tall

structures.  Therefore, it is necessary that proper SSI analysis be performed when designing tall

structures to ensure satisfactory seismic performance of the structure.  This will ensure that

earthquake damage will be minimized.

CONCLUSIONS

The following conclusions were drawn:

• soil non-linearity could decrease or increase the lateral displacements for tall slender

structures. This change should be considered in the analysis of tall slender structures

where the P-∆ ?effect ?is one of the important design parameters.

• soil non-linearity may result in an increase or decrease in the base forces compared to

those of the linear soil model case, depending on the type of structure, frequency of the

input motion, and dynamic properties of the near-field soil. This shows that the SSI may

not always have a favourable effect but could be detrimental in some cases.

• χ = 0.5 represents the condition for the maximum moment response based on the Winkler

soil model.

• The moment-rotation response is rather influenced by the absolute difference between χ

and χ = 0.5, which dictates whether uplift of yield is dominant. Based on the value of χ,

the moment-rotation response can be grouped into three categories: uplift-dominant,

uplift-yield and yield dominant.

ACKNOWLEDGEMENTS

       This research was supported by a scholarship from the National Research Centre of Iran to

the first author and a grant from the Institute of Catastrophic Loss Reduction, The University of

Western Ontario, to the second author. The contribution of data from Yadman Sazeh Co. (the

Management Consultant of the Milad TV-tower) is gratefully acknowledged. The models

presented here and the results shown and discussed were part of the doctoral work of Dr. Amir



Institute for Catastrophic Loss Reduction 16

Halabian and Mr. Nii Allotey under the supervision of Dr. El Naggar at the University of

Western Ontario.

REFERENCES

ATC (1978). Tentative  Provisions for the Development of Seismic Regulations for Buildings.

Applied Technology Council Report, ATC 3-06, Palo Alto, California.

Applied Technology Council (ATC) (1996). ATC 40: The seismic evaluation and retrofit of

concrete buildings, Vol. I & II, Redwood, Palo Alto, California

Building Seismic Safety Council (BSSC) (1997a). FEMA 273/274, NEHRP guidelines for the

seismic rehabilitation of buildings, Vol.I–Guidelines, Vol.II – Commentary, Washington DC.

Building Seismic Safety Council (BSSC) (1997b) FEMA 302/303, NEHRP recommended

provisions for seismic regulations for new buildings and other structures, Vol. I –

Guidelines, Vol. II – Commentary, Building Seismic Safety Council, Washington DC.

CEN (1994). Eurocode 7 – Geotechnical Design Part 1: General Rules. European Committee

for Standardization (CEN), Bruxelles, Belgium.

Clough R.W. and Penzien, J.1993. Dynamics of Structures. McGraw-Hill Inc., New York.

Darbre, G.R. 1990. Seismic analysis of non-linearly base-isolated soil-structure interacting

reactor building by way of the hybrid frequency-time-domain procedure. Earthquake

Engineering and Structural Dynamics, Vol. 16, pp.725-738.

Halabian, A. M. and El Naggar, M. H. 2001. Effect of foundation flexibility on seismic response

of reinforced concrete TV-towers. Canadian J. of Civil Engineering, Vol. 28(3), pp.465-481.

Lo Priesti, D. C. F., Pallara, O., Cavallaro, A., Maugeri, M. (1998).  Nonlinear stress-strain

relations of soils for cyclic loading, Proc. of XI European Conf. on Earthquake Engineering,

Paris, Balkema, Abstract volume CD-ROM, 187.

Meek (1978). Dynamic response of tipping core buildings. Earthquake Engineering and

Structural Dynamics, Vol. 6, pp. 453-454.

Negro, P., Paolucci, R., Pedretti, S., Faccioli, E. (2000). Large scale soil-structure interaction

experiments on sand under cyclic load. Paper No. 1191, 12th World Conference on

Earthquake Engineering, Auckland, New Zealand.



Institute for Catastrophic Loss Reduction 17

Negro, P., Verzeletti, G., Molina, J., Pedretti, S., Lo Presti, D., Pedroni, S. (1998).  Large-scale

geotechnical experiments on soil-foundation interaction. Special Publication No. I.98.73,

European Commission, Joint Research Center, Ispra, Italy.

Pedretti, S. (1998). Nonlinear seismic soil-foundation interaction. PhD Thesis, Department of

Structural Engineering, Politecnico di Milano, Italy.

Schnabel, P. B., Lysmer, J. and Seed, H. B. 1972. SHAKE 91 – A computer program for

earthquake response analysis of horizontally layered sites. Report No. EERC 72-12,

Earthquake Engineering Research Center, University of California, Berkeley, California.

Siddharthan, R. V., Ara, S., Norris, G. M. (1992). Simple rigid plastic model for seismic tilting

of rigid walls. Journal of Structural Engineering, ASCE, Vol. 118, No. 2, pp. 469-487.

Wolf, J. P. 1985. Dynamic Soil-Structure Interaction. Prentice-Hall, Englewood Cliffs, NJ.

Wolf, J. P. and Song, C. 1996. Finite-Element Modeling of Unbounded Media. John Willey &

Sons, New York.



Institute for Catastrophic Loss Reduction 18

Table I.1 Initial soil properties for free-field response

Table I.2 Final soil properties for free-field response

Effective
strain

Final shear modulus
(KN/m2)

Layer
Thickness

(m) Site A Site B Site A Site B

1 3 0.0169 0.0167 45630 22992

2 2.25 0.0800 0.0899 25890 11975

3 2.25 0.1023 0.1252 30302 13105

4 2.50 0.1113 0.1407 37200 15874

5 2.50 0.1545 0.3414 33233 8210

6 5 0.3068 0.5731 20746 6280

7 5 0.2868 0.5505 24348 7836

8 20 0.1421 0.4563 47584 10765

9 20 0.1179 0.5679 64225 11276

10 halfspace

Initial shear
Modulus
(KN/m2)

Initial damping ratio

Layer
Thickness

 (m) Site A Site B Site A Site B

1 3 81710 40850 0.02 0.02

2 2.25 90435 45215 0.02 0.02

3 2.25 123680 59440 0.02 0.02
4 2.50 158070 76640 0.02 0.02
5 2.50 167700 74245 0.02 0.02

6 5 164850 77650 0.02 0.02

7 5 188340 94171 0.02 0.02

8 20 233940 114580 0.02 0.02
9 20 281840 138530 0.02 0.02
10 halfspace 0.00 0.00

Initial shear
Modulus
(KN/m2)

Initial damping ratio

Layer
Thickness

 (m) Site A Site B Site A Site B

1 3 81710 40850 0.02 0.02

2 2.25 90435 45215 0.02 0.02

3 2.25 123680 59440 0.02 0.02
4 2.50 158070 76640 0.02 0.02
5 2.50 167700 74245 0.02 0.02

6 5 164850 77650 0.02 0.02

7 5 188340 94171 0.02 0.02

8 20 233940 114580 0.02 0.02
9 20 281840 138530 0.02 0.02
10 halfspace 0.00 0.00
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                                              Structure
                                                   “s”

                                                                  “f”
                                                                                “i”
                                       Near-field soil zone

                                  General structure-soil interface

                                                Far-field soil, “g”
                                        (Unbounded medium)

                             Figure I.1 Soil-structure system
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                                                 M                                                                                                m1

                                                                                                                                                    k1,c1

                                                                                                                                 mF

                               Bounded Medium I                                  Non-linear Frame Element

                                Bounded Medium II                                Non-linear Frame Element

                                    Bounded Medium III                           Non-linear Frame Element

                                                                                                 One-Point Linear Spring
                                  Unbounded Medium                                 and Dashpot Element

                      a)                                                                                                                         b)

                                    Figure I.2 Proposed model for soil-structure system
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            120m                                                                            Antenna

            75m                                                                                       Observation building

          240m                                                                      Shaft

                                                                                                           Base level

             14m                                                    Transition                                                                                                  

                                 3m

  Figure I.3 TV-tower model

Mat  foundation
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Figure I.4 Calculated time histories of bending moment at the base of the tower for site A with

                     silty sand soil
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Figure II.1 Stresses and displacements for different footing states
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Figure II.2 Schematic of different states of moment-rotation response (after FEMA 273/274)
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Figure II.3 Computed moment-rotation curves for χ = 0.2 a) for small ψ; b) large ψ
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Figure II.4 Computed moment-rotation curves for different values of χ for ψ = 200
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Figure II.5 Computed moment-rotation curves showing points of change of state
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Figure II.6 Load-deformation results from TRISEE experiments: a) load-deformation curves

for HD tests; b) load-deformation curves for LD tests
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Figure II.7 Comparison between predicted and experimental moment-rotation curves
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