

Assessment of Climate Change Risk to Municipal Infrastructure - City of London

Lisa Bowering, Angela Peck, and Slobodan P. Simonovic The University of Western Ontario The Institute for Catastrophic Loss Reduction The University of Waterloo

Key messages

- $\overline{\mathbb{R}}$ Municipal infrastructure is vulnerable to climate change
- $\overline{\mathbb{R}}$ Adaptation cost can be very high
- k. Adaptation = Risk management
- $\overline{\mathbb{R}}$ Comprehensive risk assessment methodology is required to gather and examine available data in order to develop an understanding of the relevant climate effects and their interactions with infrastructure.
- **Time to act is now**

Outline

- \mathbb{R}^3 **• Methodology introduction and data**
	- **Climate modelling**
	- **-** Hydrologic modelling
	- **B** Hydraulic modelling
- **Risk assessment**
- Conclusions

Study team

- Slobodan P. Simonovic, Professor (UWO, ICLR)
- Donald H. Burn, Professor (UW)
- Dan Sandink, Manager (ICLR)
- Hyung-II Eum, PostDoctoral Fellow (UWO)
- Angela Peck, MESc candidate (UWO)
- **Lisa Bowering, MESc candidate (UWO)**
- **Dragan Sredojevic, MESc candidate (UWO).**

Research methodology

Research methodology

- \mathbb{R}^2 Data Input
	- Inventory of infrastructure components;
	- Г Data gathering and sufficiency analysis;
- $\mathcal{L}_{\mathcal{A}}$ Climate Modelling
	- Existing climate scenario
	- Г Wet climate scenario
- \mathbb{R}^2 Hydrologic Modelling
	- HEC-HMS model
- Hydraulic Modelling
	- HEC-RAS model
- П Risk Assessment
	- Ē, Qualitative vulnerability assessment;
	- Quantitative vulnerability assessment; and
- П Prioritization of the infrastructure components based on the level of risk

City of London, Ontario, Canada

www.slobodansimonovic.com -> research -> FIDS 7

Spatial data

www.slobodansimonovic.com -> research -> FIDS 8

Infrastructure data input

- \blacksquare Buildings
- \mathbb{R}^2 **Transportation**
	- Roadways
	- \blacksquare Bridges
- $\mathcal{C}^{\mathcal{A}}$ Critical Infrastructure
	- \blacksquare **Schools**
	- Г Hospitals and Emergency Services
- \mathcal{L}_{max} **Barriers**
	- Dams, Dikes, Other flood control infrastructure
- $\mathcal{L}_{\mathcal{A}}$ Sewer Infrastructure
	- Wastewater Treatment Plants
	- **Outlets**
	- ٠ Sanitary and Storm Systems

Climate modelling

Climate scenarios

- **Lower bound climate scenario**
	- **No modifications due to climate change** and future emissions
	- Weather generator with perturbation of historical data
- \mathbb{R}^3 **Upper bound climate scenario**
	- **Recommended by the previous study**
	- Data modified by GCM

Choice of climate scenario

Weather generator

- K-NN model
	- **Successful applications (Yates,** 2003; Sharif and Burn, 2006)
	- **Ability to generate** meteorological variables out of the historical range
	- **Combined with Principle** Component Analysis to reduce computational burden
	- Use of 15 stations and 3 variables (precipitation, maximum and minimum temperature)

Weather generator

Hydrologic modelling

Hydrologic modelling

- $\overline{}$ Modification of HEC-HMS
- $\mathcal{L}_{\mathcal{A}}$ Nesting of sub-basins
	- Ξ Medway (5 sub-basins)
	- Ξ Stoney (6 sub-basins)
	- П Pottersburg (4 sub-basins)
	- Dingman (16 sub-basins)

Hydrologic modelling

More frequent flooding More severe floods

Hydraulic modelling

Hydraulic modelling

- \mathbb{R}^2 Input: Streamflows from hydrologic model
- HEC-RAS and HEC-GeoRAS
- $\mathcal{L}_{\mathcal{A}}$ Output: floodplains to represent flood extent and depth for use in risk analysis

Hydraulic modelling

Risk = Probability of hazard x Σ[Monetary damage value x Consequence]

Identify inundated infrastructure

Probability - The likelihood that a particular flood event will occur in a given year

- **Flood Consequence Multipliers**
	- **Loss of Function (IM₁)** a fraction of the damage an infrastructure incurs as a result of losing its function during a flood event [0,1]
	- **Loss of Equipment (IM₂)** a fraction of the damage to any equipment related to the infrastructure as a result of a particular flood event [0,1]
	- **Loss of Structure (IM₃)** a level of damage to the infrastructure itself which may need repair or replacement as a result of a particular flood event

Deterministic (quantitative) and fuzzy (qualitative) damage measures are combined to describe loss of structure (IM₃)

> $CM = 0$ $IM_3(CM) = \begin{cases} 1, & \text{if } \\ Min \left(1, LS \times \frac{1}{CM} \right), \end{cases}$ $CM > 0$

Wester:

www.slobodansimonovic.com -> research -> FIDS 34

www.slobodansimonovic.com -> research -> FIDS 38

www.slobodansimonovic.com -> research -> FIDS 39

Conclusions

- \mathbb{R}^3 **Insights into climate change caused** flood risk to municipal infrastructure
- \mathbb{R}^3 **Multiple recommendations (engineering,** operational, policy)
- \mathbb{R}^3 **Input into adaptation policy** development
- \mathbb{R}^3 **Prioritization of adaption action**

