

Assessment of Climate Change Risk to Municipal Infrastructure - City of London

Lisa Bowering, Angela Peck, and Slobodan P. Simonovic The University of Western Ontario The Institute for Catastrophic Loss Reduction The University of Waterloo

Key messages

- Municipal infrastructure is vulnerable to climate change
- Adaptation cost can be very high
- Adaptation = Risk management
- Comprehensive risk assessment methodology is required to gather and examine available data in order to develop an understanding of the relevant climate effects and their interactions with infrastructure.
- Time to act is now

Outline

- Methodology introduction and data
 - Climate modelling
 - Hydrologic modelling
 - Hydraulic modelling
- Risk assessment
- Conclusions

Study team

- Slobodan P. Simonovic, Professor (UWO, ICLR)
- Donald H. Burn, Professor (UW)
- Dan Sandink, Manager (ICLR)
- Hyung-II Eum, PostDoctoral Fellow (UWO)
- Angela Peck, MESc candidate (UWO)
- Lisa Bowering, MESc candidate (UWO)
- Dragan Sredojevic, MESc candidate (UWO).

Research methodology

Research methodology

- Data Input
 - Inventory of infrastructure components;
 - Data gathering and sufficiency analysis;
- Climate Modelling
 - Existing climate scenario
 - Wet climate scenario
- Hydrologic Modelling
 - HEC-HMS model
- Hydraulic Modelling
 - HEC-RAS model
- Risk Assessment
 - Qualitative vulnerability assessment;
 - Quantitative vulnerability assessment; and
- Prioritization of the infrastructure components based on the level of risk

City of London, Ontario, Canada

www.slobodansimonovic.com -> research -> FIDS

7

Spatial data

Infrastructure data input

- Buildings
- Transportation
 - Roadways
 - Bridges
- Critical Infrastructure
 - Schools
 - Hospitals and Emergency Services
- Barriers
 - Dams, Dikes, Other flood control infrastructure
- Sewer Infrastructure
 - Wastewater Treatment Plants
 - Outlets
 - Sanitary and Storm Systems

Climate modelling

Climate scenarios

- Lower bound climate scenario
 - No modifications due to climate change and future emissions
 - Weather generator with perturbation of historical data
- Upper bound climate scenario
 - Recommended by the previous study
 - Data modified by GCM

Choice of climate scenario

Weather generator

- K-NN model
 - Successful applications (Yates, 2003; Sharif and Burn, 2006)
 - Ability to generate meteorological variables out of the historical range
 - Combined with Principle Component Analysis to reduce computational burden
 - Use of 15 stations and 3 variables (precipitation, maximum and minimum temperature)

Weather generator

Hydrologic modelling

Hydrologic modelling

- Modification of HEC-HMS
- Nesting of sub-basins
 - Medway (5 sub-basins)
 - Stoney (6 sub-basins)
 - Pottersburg (4 sub-basins)
 - Dingman (16 sub-basins)

Hydrologic modelling

More frequent flooding More severe floods

Hydraulic modelling

Hydraulic modelling

- Input: Streamflows from hydrologic model
- HEC-RAS and HEC-GeoRAS
- Output: floodplains to represent flood extent and depth for use in risk analysis

Hydraulic modelling

250 yr

23

Risk = Probability of hazard x Σ [Monetary damage value x Consequence]

Identify inundated infrastructure

Western

 Probability - The likelihood that a particular flood event will occur in a given year

- Flood Consequence Multipliers
 - Loss of Function (IM₁) a fraction of the damage an infrastructure incurs as a result of losing its function during a flood event [0,1]
 - Loss of Equipment (IM₂) a fraction of the damage to any equipment related to the infrastructure as a result of a particular flood event [0,1]
 - Loss of Structure (IM₃) a level of damage to the infrastructure itself which may need repair or replacement as a result of a particular flood event

 Deterministic (quantitative) and fuzzy (qualitative) damage measures are combined to describe loss of structure (IM₃)

$$IM_{3}(CM) = \begin{cases} 1, & CM = 0\\ Min\left(1, LS \times \frac{1}{CM}\right), & CM > 0 \end{cases}$$

Wester

www.slobodansimonovic.com -> research -> FIDS

100 CC_ LB	100 CC_ UB	250 CC_LB	250 CC_UB		
Total risk					
573,000,000	984,000,000	917,000,000	1,252,000,000		
0.00	0.61	0.51	1.00		
5,730,000	9,840,000	3,668,000	5,004,000		
0.33	1.00	0.00	0.22		

250 UTRCA	250 CC_LB	250 CC_UB
797,000,000	917,000,000	1,252,000,000
0.00	0.26	1.00
3,188,000	3,668,000	5,004,000
0.00	0.27	1.00

www.slobodansimonovic.com -> research -> FIDS

100 CC_ LB	100 CC_ UB	250 CC_LB	250 CC_UB
	Ro	ads	
0.00	0.00	0.00	0.00
	Brie	lges	
0.50	0.58	0.23	0.27
	Buile	lings	
0.43	1.00	0.37	0.55
	Pollution Co	ontrol Plants	
0.57	0.62	0.24	0.30
	Critical	Facilities	
0.00	0.01	0.00	0.00
	Bar	riers	
0.16	0.65	0.23	0.32

www.slobodansimonovic.com -> research -> FIDS

Conclusions

- Insights into climate change caused flood risk to municipal infrastructure
- Multiple recommendations (engineering, operational, policy)
- Input into adaptation policy development
- Prioritization of adaption action

