ff[ ﬁ‘?ﬁ Institute for BEN Fl EI_D
7

“’J"“ 4 l.’ Catastrophic Loss
'\( !!J"r Reduction

y T—

Earthquake Forecasting:
Advances and Challenges

K.F. Tiampo

With the help of
H. Li

W. Klein

J.B. Rundle
Y. Toya

A. Mignan

A. Jiménez
C. Chen



Outline

Introduction

Patterns and statistics in earthquake systems
Earthquake forecasting using historic seismicity
data

Improving earthquake forecasting

Demonstrate a new, interactive program that
calculates these forecasts for researchers and,
eventually, government agencies

Examples, including eastern and western
Canada



Motivation

Earthquakes are generally the most feared of natural
hazards because they occur without warning. Hurricanes
can be tracked; floods rise in a systematic way; volcanic
eruptions are preceded by a variety of phenomena.

The devastation caused by the Sumatran earthquake,
December 2004, and the subsequent tsunami, once
again demonstrated our vulnerability to the effects of a
great earthquake.

Historical records from around the world suggest that,
while rare, similar large events (M = 9) have occurred
elsewhere. For example, there is strong evidence that a
similar earthquake occurred in the Cascadian subduction
zone in 1700.

Smaller, but also very destructive earthquakes (M > 6.5)
occur every year, many in populated areas.

Earthquakes, until very recently, have not been forecast
with any significant degree of success.

http://www.pnsn.org/ (Ruth Ludwin)
http://www.virtualmuseum.ca




Background: Seismicity of Canada
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Seismicity and damage potential

Histarical earthquakes in southern Canada with damage potential (to 2007)
(light-moderate=M>5 east, »5.5 west, moderate-heavy = M>6 east, >6.5 west)
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Future earthquakes in Canada are inevitable, and a major urban
earthquake is our greatest potential natural disaster (Etkin et al., 2004)



Cities that contribute most to seismic
risk in Canada
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Ottawa,/Hull

Relative contributions to seismic risk in Canada (source: Geological Survey of Canada)



Background

In the past, our ability to assess seismic hazard has been largely
based on our knowledge of the spatial distribution of large
earthquakes.

However, patterns in seismicity data, both spatial and temporal, have
been recognized for as long as we have been keeping records.
Aftershocks, cascades of smaller events, for example, are recorded
after every major event.

Precursory seismic patterns, either quiescence or activation, have
been postulated for more than 40 years, but studies were limited to
larger events and local regions.

Recently, better networks and an interest in stress triggering has led
to the collection of higher quality seismic data that includes the very
smallest events.

This enlarged data set has led to the ability to analyze seismicity
data, in a statistical sense and to provide insights into the physics of
the underlying process.

One by-product of these statistical studies of earthquake patterns has
been a renewed interest in earthquake forecasting, with some
promise of success.



Patterns of Extreme Events

Space-time patterns are observed in many systems in science and
engineering.

Forecasting the future evolution of these space-time patterns can be
achieved using time series methods and pattern dynamics analysis.
Vortices (below) are one type of space-time pattern that emerges from
a nonlinear dynamical system. Climate simulations have been
remarkably successful over the past 30 years in forecasting its
behaviour.

New approaches from
computational physics and nonlinear
dynamical systems suggest that the
earthquake fault system is a strongly
correlated system, coupled across
many scales.

Simulations show that regions of
spatially coherent stress are
associated with spatially coherent
regions of anomalous seismicity
(quiescence or activation).

Hurricane Mitch, 1998 (NOAA)



Patterns of Extreme Events
Earthquakes

It is now known that the San Francisco earthquake and fire of April
18, 1906 killed more than 3000 persons. Estimates are that if it were
to happen today, damages could total well in excess of $500 billion
(USD). (Damage estimate from T. Wallace testimony to US
Congress).
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The Nisqually, Washington Earthquake
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February 2, 2001, a magnitude 6.8 event, caused
more than $2 billion in damages




The Magnitude 7.9 Gujarat, India
Earthquake

January 26, 2001 — An intraplate earthquake similar to New Madrid,

.00l A LA )
More than 30,000 persons died in the "
event, and damages exceed $10 Billion



Seismicity Patterns

There is increasing evidence that systematic
precursory patterns exist in regional seismicity
prior to large earthquakes.

For example, one recurring pattern observed in
the data has been coined “characteristic
earthquakes”. A characteristic earthquake is
one that repeats on a regular basis, in the
same location and with the same approximate
size every time.

It was proposed, for example, that the Parkfield
earthquake, so named because of its proximity
to the town of Parkfield, California, along the
San Andreas Fault, was an example of a
characteristic earthquake.

It was observed to repeat regularly every 22
years for more than 100 years.

Unfortunately, despite a large-scale
instrumentation program, the next earthquake
in the series, expected in 1988, did not occur
until 2004.

http://quake.wr.usgs.gov

Historical M 6
Parkfield
Earthquakes

Future Earthquakes?

1857

1850 1900 1950 2000 2050
http://www.cisn.org



Earthquake Simulations

Virtual California is a Cellular Automata based computational model
(PRE, 61, 2000)

At right is the model fault
system used for the
simulations.

The historic record of
earthquakes over the last
200 years is shown at left.

1
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i Simulations of earthquake fault
s 2 h systems can be carried out
using the Virtual California
1 model. At leftis shown the
205, buildup of stress over time
and space. Lines =
Earthquakes
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At right is shown an example
of one of the large earthquakes
that occur during a simulation.
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San Andreas Fault

|

Fault Network Model for
Southern California

Large Event

Event Time: 701543, Years

Maximum Slip:  15.00 Meters
RED =5 RIGHT Lateral Sip

BLUE =3 LEFT Lateral Slip



Seismicity Data, S. California
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The map on the left shows the intensity of seismicity in Southern
California during the period 1932-1991, normalized to the maximum
value. The most intense red areas are regions of most intense
seismic activity. This is called a Relative Intensity (RI) map.

On the right are shown the largest events to occur over the past 70
years.



Pattern Informatics (Pl) Index

A method for analyzing historic catalog data in order to detect
changes in observable seismicity prior to major earthquakes,
developed from observations and ideas generated by
computational simulations.

It identifies the development over time of spatially coherent
regions of seismicity.

The resulting pattern informatics (Pl) index is computed directly
from seismicity data.

Here we use the small earthquakes of magnitude three to act as
sensors for the larger earthquakes. The physical idea is that the
small earthquakes (M ~ 3) act as a sensor, telling us about
changes in the underlying stress level.

A local coherent structure is measured relative to the long-term
regional background rate, and corresponds to the increased
probability of an event.

Note that the actual calculation is calculated using both the long-
term mean and variance.



Pl Anomalies, S. California, 1978-1991

= Plot of Log,, (seismic
potential).

* |ncrease in potential for
large earthquakes, M > 5,
1991 to 2001.

= |nverted triangles denote
those events to occur
during the calculation
period, 1978-1991.

= Circles denote those
events to occur during the
forecast period, 1991-
2001.




Anomalous Seismic Activity Patterns

= Does the Pl method detect anomalous activity or anomalous
guiescence? Both.
= On the right is shown the corresponding patterns of anomalous activity
(red) and anomalous quiescence (blue) during the period 1978
through 1991.
| | | — T
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An Earthquake Forecasting Experiment
PNAS, 2002
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Pl index for large earthquakes, M > 5, ~ 2000 to 2010



Forecast of Shallow (<20 km depth)

Earthquake Locations
Tokyo Area, Japan (Courtesy K. Nanjo, et al., 2004).

38’
" Forecast for the period:

January 1, 2000 ~ December
31, 2010. 37°

= The October 23, 2004, M =
6.8 Niigata, Japan earthquake ...
killed at least 37 people and
iInjured thousands. Its main
shock and principal 35’
aftershocks with M > 5 are
shown (arrow).

= Again, this image was first
shown during lectures in
Japan on October 13 & 14, 33
2004.




Improving seismicity based
forecasts - ergodicity

In statistical mechanics, a system is determined to be ergodic if it
visits every possible state in phase space over the course of time.
In this application, we are restricted to the very narrowest
interpretation: If a system is ergodic, given enough sampling time,
the temporal averages of a particular observable must equal the
ensemble average.

Why is this useful?

— One important corollary is that an ergodic system is stationary.
If the temporal and spatial mean are approaching the same
value, we can properly estimate the rate of background
seismicity.

— Because many forecasting algorithms today use variations in
seismicity rates to locate anomalous patterns, accurate
estimates of the long-term background rates are critical to
evaluating and improving these forecasting techniques.

Here | employ a particular measure of ergodicity, the Thirumalai-
Mountain (TM) metric (Thirumalai et al., 1989) developed for
studying the behavior of various materials in different
thermodynamical phases.



inverse metric

Ergodicity in Fault Models

We can relate the number of events to the energy of the system. If the
system is ergodic, then the inverse TM metric is linear with time.

At the left is shown the
inverse TM metric for
numbers of events, in a
slider block model with
precursory slip (Tiampo et
al., 2003).

Note that, while the linear
regions here indicate
ergodicity, or punctuated
ergodicity, there are also
certain ranges of
parameters, not shown, for
which these models, are
not ergodic.



Typical Analysis - California

Seismicity data from the ANSS catalog, for the period 1932-2004
(time period)

Events are binned into areas 0.1° to a side (spatial discretization)
Analysis is performed for an area ranging from 32° to 39° latitude,
-123° to -115° longitude, or some subset thereof (spatial region).

No declustering is performed, except for a particular magnitude
cutoff (magnitude cutoff).

A matrix is created consisting of the seismicity time series (n time
steps) for each location (p locations).

Vi iy
1 2 P
Ve OVE . yP

Study data from several natural catalogs by calculating the TM
metric for the number of events, in order to investigate under what
conditions (parameters) the system is, or is not, ergodic (Tiampo
et al., PRE, 2007).



NITM

Ergodicity in Natural Catalogs

Again, we bin the California
region into a set of
locations, and use the
numbers of events as our
measurable

Variations In location
accuracy, magnitude
completeness, and

coverage have a significant
effect on ergodicity

L 1 1 L L L 1
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Normalized Inverse TM metric (NITM)

California
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NITM
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Can these results be used to improve seismicity based
earthquake forecasts?

= The Pl index measures anomalous seismicity rate, both positive (activation) and
negative (quiescence), relative to the long-term background rate. These
anomalous regions are then interpreted as a proxy for a forecast of an upcoming
event.

= There tend to be very few false negatives (misses) if the historic data is of good
quality, but more false positives.

= |t is a good candidate to test potential improvements for ergodic regions
because:

- Pl values are directly related
to the spatial mean, and
inversely related to the standard
deviation in the seismicity rate,
so it should be directly affected
by variations in spatial averages.
- Reductions in noise will
improve the false positive rate.

- Optimizing the parameter
range of the input data for
ergodic regions should increase
the accuracy of the resulting
forecasts.




Eastern North American Seismicity
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Pl Index, eastern
Canada

= P| forecast for
eastern Canada,
2002-2012. On the
top is a forecast for
M = 3, at the bottom
IS shown the same
forecast for M = 4.

= Note that we have
significantly
decreased the false
positive rate shown
at the top.




Ergodicity in Natural Catalogs

Taiwan, M = 3, 1973-2005
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Ergodicity in Natural Catalogs
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2D analysis,
boxsize = 0.02°
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Ergodicity in Natural Catalogs
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Plots of 3D Pl and Rl maps the
Taiwanese subduction zone for
M = 3, a time step of 1 yearr,
and a discretization of
0.1°x0.1°x0.25 km, calculated
for 1994-1998. Green circles
indicate the large events of
M = 6 that occur in the period
1999-2003. Depth ranges of a)
and b) 7.75 to 8.00 km, c) and d)
13.75 to 14.00 km. The color
scale is logarithmic.
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Ergodicity in Natural Catalogs
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False Alarm Rate
ROC diagrams comparing the Pl and Rl maps for the previous forecasts.
Again, on the left is shown the results for a forecast using the effectively
ergodic period, 1994-1998, while on the right is shown the same forecast using
a non-ergodic period, 1988-1997.



Ergodicity in Synthetic Catalogs
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Left: Synthetic catalog with a reverse fault (L = 200 km, W= 10 km, dip = 45°,
expected magnitude M ~ 7.3) is located in the centre of an 18 degree square region.
A stress shadow (quiescence) is created at t=0 and decreases in size through time,

until t,= 20 yrs. Background events produce aftershocks which can also produce their
own aftershocks. Right: Synthetic seismicity catalog, background seismicity only.
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Left: Inverse TM metric, for the synthetic catalog with quiescence;
Right: Inverse TM metric for the random catalog.



Ergodicity in Synthetic Catalogs
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MAPI — A software tool to implement and test these
methods interactivel
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